Measure of Central Tendency: Usually when two or more different data sets are to be compared it is necessary to condense the data, but for comparison the condensation of data set into a frequency distribution and visual presentation are not enough. It is then necessary to summarize the data set in a single value. Such a value usually somewhere in the center and represent the entire data set and hence it is called measure of central tendency or averages. Since a measure of central tendency (i.e. an average) indicates the location or the general position of the distribution on the X -axis therefore it is also known as a measure of location or position.

Types of Measure of Central Tendency

1. Arithmetic Mean
2. Geometric Mean
3. Harmonic Mean
4. Mode
5. Median

Arithmetic Mean or Simply Mean: "A value obtained by dividing the sum of all the observations by the number of observation is called arithmetic Mean"

$$
\text { Mean }=\frac{\text { Sum of All observation }}{\text { Number of observation }}
$$

Methods	Ungrouped data	Grouped data
Direct Method	$\bar{x}=\frac{\sum x_{i}}{n}$	$\bar{x}=\frac{\sum f x}{n} ;$ Here $n=\sum f$
Short cut Method	$\bar{x}=A+\frac{\sum D}{n}$	$\bar{x}=A+\frac{\sum f D}{n} ;$ Here $n=\sum f$
	Where $D=X_{i}-A$ and A is the provisional or assumed mean.	
	$\bar{x}=A+\frac{\sum u}{n} \times h$	$\bar{x}=A+\frac{\sum f u}{n} \times h ;$ Here $n=\sum f$
	Where $u=\frac{X_{i}-A}{h}$ and h is the common width of the class intervals	

Numerical Example:

Calculate the arithmetic mean for the following the marks obtained by 9 students are given below:

Using formula of arithmetic mean for ungrouped data:

$$
\begin{gathered}
\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n} \\
n=9 \\
\bar{x}=\frac{360}{9}=40 \mathrm{marks}
\end{gathered}
$$

$>$ Numerical Example:

x_{i}
45
32
37
46
39
36
41
48
36
$\sum_{i=1}^{n} x_{i}=360$

\diamond Calculate the arithmetic mean for the following data given below:

- Using formula of direct method of arithmetic mean for grouped data:
$\bar{x}=\frac{\sum_{i=1}^{n} f_{i} x_{i}}{\sum_{i=1}^{n} f_{i}}, n=\sum_{i=1}^{n} f_{i}$
The weight recorded to the nearest grams of 60 apples picked out at random from a consignment are given below:

106	107	76	82	109	107	115	93	187	95	123	125
111	92	86	70	126	68	130	129	139	119	115	128
100	186	84	99	113	204	111	141	136	123	90	115
98	110	78	185	162	178	140	152	173	146	158	194
148	90	107	181	131	75	184	104	110	80	118	82

Weight (grams)	Frequency
$65---84$	09
$85---104$	10
$105----124$	17
$125---144$	10
$145----164$	05
$165---184$	04
$185---204$	05

Solution:

Solution:

Weight (grams)	Midpoints $\left(x_{i}\right)$	Frequency $\left(f_{i}\right)$	$f_{i} x_{i}$
$65---84$	$(65+84) / 2=74.5$	09	$9 \times 74.5=670.5$
$85---104$	94.5	10	945.0
$105---124$	114.5	17	1946.5
$125---144$	134.5	10	1345.0
$145---164$	154.5	05	772.5
$165---184$	174.5	04	698.0
$185----204$	194.5	05	972.5
		$\sum_{i=1}^{n} f_{i}=60$	$\sum_{i=1}^{n} f_{i} x_{i}=7350.0$

$\bar{x}=\frac{\sum_{i=1}^{n} f_{i} x_{i}}{\sum_{i=1}^{n} f_{i}}=\frac{7350.0}{60}=122.5$ grams (Answer).

- Using formula of short cut method of arithmetic mean for grouped data:

$$
\bar{x}=A+\frac{\sum_{i=1}^{n} f_{i} D_{i}}{\sum_{i=1}^{n} f_{i}}, n=\sum_{i=1}^{n} f_{i}
$$

Where $D_{i}=X_{i}-A$ and A is the provisional or assumed mean

Weight (grams)	Midpoints $\left(x_{i}\right)$	Frequency $\left(f_{i}\right)$	$D_{i}=X_{i}-A$ $A=114.5$	$f_{i} D_{i}$
$65---84$	$(65+84) / 2=74.5$	09	-40	-360
$85---104$	94.5	10	-20	-200
$105---124$	$\underline{114.5}$	$\underline{17}$	0	0
$125---144$	134.5	10	20	200
$145---164$	154.5	05	40	200
$165---184$	174.5	04	60	240
$185----204$	194.5	05	80	400
		$\sum_{i=1}^{n} f_{i}=60$		$\sum_{i=1}^{n} f_{i} D_{i}=480$

$\bar{x}=A+\frac{\sum_{i=1}^{n} f_{i} D_{i}}{\sum_{i=1}^{n} f_{i}}=114.5+\frac{480}{60}=122.5$ grams (Answer).

- Using formula of step deviation method of arithmetic mean for grouped data:
$\bar{x}=A+\frac{\sum_{i=1}^{n} f_{i} u_{i}}{\sum_{i=1}^{n} f_{i}} \times h, u_{i}=\frac{x_{i}-A}{h}$, where h is the width of the class interval:

Weight (grams)	Midpoints $\left(x_{i}\right)$	Frequency $\left(f_{i}\right)$	$u_{i}=\frac{X_{i}-A}{h}$ $A=114.5, h=20$	$f_{i} u_{i}$
$65---84$	$(65+84) / 2=74.5$	09	-2	-18
$85---104$	94.5	10	-1	-10
$105---124$	$\underline{114.5}$	$\underline{17}$	0	0
$125---144$	134.5	10	1	10
$145---164$	154.5	05	2	10
$165---184$	174.5	04	3	12
$185---204$	194.5	05	4	20
		$\sum_{i=1}^{n} f_{i}=60$		$\sum_{i=1}^{n} f_{i} u_{i}=24$

$\bar{x}=A+\frac{\sum_{i=1}^{n} f_{i} u_{i}}{\sum_{i=1}^{n} f_{i}} \times h=114.5+\frac{24}{60} \times 20=114.5+08=122.5$ grams \quad (Answer).

Properties of Arithmetic Mean: The following are the properties of arithmetic mean:

- The mean of a constant is that constant.

Proof: By definition of arithmetic mean: $\bar{x}=\frac{\sum x i}{n}$

$$
\begin{aligned}
\text { If "c" is any constant, then } & \bar{x}=\frac{\sum c}{n} \\
& \Rightarrow \bar{x}=\frac{n c}{n} \quad\left(\because \sum c=n c\right) \\
\Rightarrow & \bar{x}=c
\end{aligned}
$$

- The sum of deviations from mean is equal to zero. i.e. $\sum(x i-\bar{x})=0$

Proof: Sum of Deviation $=\sum(x i-\bar{x})$

$$
\begin{aligned}
& =\sum x i-\sum \bar{x} \\
& =\sum x i-n \bar{x} \quad(\because \bar{x} \text { is constant }) \\
& =\sum x i-n\left(\frac{\sum x i}{n}\right) \quad\left(\because \bar{x}=\frac{\sum x i}{n}\right) \\
& =\sum x i-\sum x i \\
& =0
\end{aligned}
$$

- The sum of squared deviations from the mean is smaller than the sum of squared deviations from any arbitrary value or provisional mean. i.e. $\sum(x i-\bar{x})^{2}<\sum(x i-A)^{2}$
Proof: Taking $\sum(x i-A)^{2}=\sum(x i-A+\bar{x}-\bar{x})^{2}$

$$
\Rightarrow \sum(x i-A)^{2}<\sum(x i-\bar{x})^{2}
$$

$$
\begin{aligned}
& =\sum[(x i-\bar{x})+(\bar{x}-A)]^{2} \\
& =\sum\left[(x i-\bar{x})^{2}+(\bar{x}-A)^{2}-2(x i-\bar{x})(\bar{x}-A)\right] \\
& =\sum(x i-\bar{x})^{2}+\sum(\bar{x}-A)^{2}-2 \sum(x i-\bar{x})(\bar{x}-A) \\
& =\sum(x i-\bar{x})^{2}+n(\bar{x}-A)^{2}-2(\bar{x}-A) \sum(x i-\bar{x}) \\
& =\sum(x i-\bar{x})^{2}+n(\bar{x}-A)^{2} \quad\left\{\because \sum(x i-\bar{x})=0\right\} \\
& <\sum(x i-\bar{x})^{2} \quad\left\{\because n(\bar{x}-A)^{2}>0\right\}
\end{aligned}
$$

Note: If $A=\bar{x}$ Then $\sum(x i-A)^{2}=\sum(x i-\bar{x})^{2}$

- The arithmetic mean is affected by the change of origin and scale i.e. when a constant is added to or subtracted from each value of a variable or if each value of a variable is multiplied or divided by a constant, then arithmetic mean is affected by these changes.

Variable	Mean
$X i$	\bar{X}
$X i \pm a$	$\bar{X} \pm a$
$a X i$	$a \bar{X}$
$\frac{X i}{a}$	$\frac{\bar{X}}{a}$

> Geometric Mean: "The $\mathrm{n}^{\text {th }}$ root of the product of " n " positive values is called geometric mean"

Geometric Mean $=\sqrt[n]{\text { product of } " n " \text { positive values }}$
The following are the formulae of geometric mean:

Ungrouped data	Grouped data
$G=$ Antilog $\left(\frac{\sum \log x}{n}\right)$	$G=\operatorname{Antilog}\left(\frac{\sum f \log x}{n}\right) ;$ Here $n=\sum f$

* Numerical example of geometric Mean for both grouped and ungrouped data:
> Calculate the geometric mean for the following the marks obtained by 9 students are given below:

x_{i}	45	32	37	46	39	36	41	48	36

\diamond Using formula of geometric mean for ungrouped data:

$$
n=9
$$

x_{i}	$\log x_{i}$
45	$\log 45=1.65321$
32	1.50515
37	1.56820
46	1.66276
39	1.59106
36	1.55630
41	1.61278
48	1.62124
36	1.55630
	$\sum_{i=1}^{n} \log x_{i}=14.38700$

$$
\begin{aligned}
& G . M=\text { anti }-\log \left(\frac{\sum_{i=1}^{n} \log x_{i}}{n}\right) \\
& G . M=\text { anti }-\log \left(\frac{14.38700}{9}\right) \\
& G . M=\text { anti }-\log (1.59856) \\
& \quad G . M=39.68 \quad \text { (Answer). }
\end{aligned}
$$

$>$ Given the following frequency distribution of weights of 60 apples, calculate the geometric mean for grouped data.

Weights (grams)	$65--84$	$85--104$	$105--124$	$125--144$	$145--164$	$165--184$	$185--204$
Frequency	09	10	17	10	05	04	05

$G . M=\operatorname{anti}-\log \left(\frac{\sum_{i=1}^{n} f_{i} \log x_{i}}{\sum_{i=1}^{n} f_{i}}\right)$

- Harmonic Mean: "The reciprocal of the Arithmetic mean of the reciprocal of the values is called Harmonic mean"

Harmonic Mean $=$ reciprocal of $\left(\frac{\text { Sum of reciprocal of the values }}{\text { The number of values }}\right)$

The following are formulae of harmonic mean:

Ungrouped data	Grouped data
$H=\frac{n}{\sum\left(\frac{l}{x}\right)}$	$H=\frac{n}{\sum\left(\frac{f}{x}\right)} \quad ;$ Here $n=\sum f$

* Numerical example of harmonic Mean for both grouped and ungrouped data:
> Calculate the harmonic mean for the following the marks obtained by 9 students are given below:

x_{i}	45	32	37	46	39	36	41	48	36

\diamond Using formula of harmonic mean for ungrouped data:

$$
n=9
$$

x_{i}	$1 / x_{i}$
45	0.02222
32	0.03125
37	0.02702
46	0.02173
39	0.02564
36	0.02777
41	0.02439
48	0.02083
36	0.02777
	$\sum_{i=1}^{n} \frac{1}{x_{i}}=0.22862$

$$
\begin{aligned}
H . M & =\frac{n}{\sum_{i=1}^{n}\left(\frac{1}{x_{i}}\right)} \\
H \cdot M & =\frac{9}{0.22862} \\
H . M & =39.36663 \quad \text { (Answer). }
\end{aligned}
$$

$>$ Given the following frequency distribution of weights of 60 apples, calculate the harmonic mean for grouped data.

Weights (grams)	$65--84$	$85--104$	$105--124$	$125--144$	$145--164$	$165--184$	$185--204$
Frequency	09	10	17	10	05	04	05

$$
H . M=\frac{\sum_{i=1}^{n} f_{i}}{\sum_{i=1}^{n}\left(\frac{f_{i}}{x_{i}}\right)}
$$

Weight (grams)	Midpoints $\left(x_{i}\right)$	Frequency $\left(f_{i}\right)$	f_{i} / x_{i}
$65----84$	$(65+84) / 2=74.5$	09	0.12081
$85----104$	94.5	10	0.10582
$105---124$	114.5	17	0.14847
$125----144$	134.5	10	0.07435
$145---164$	154.5	05	0.03236
$165---184$	174.5	04	0.02292
$185---204$	194.5	05	0.02571
		$\sum_{i=1}^{n} f_{i}=60$	$\sum_{i=1}^{n} \frac{f_{i}}{x_{i}}=0.53044$

$H . M=\frac{\sum_{i=1}^{n} f_{i}}{\sum_{i=1}^{n}\left(\frac{f_{i}}{x_{i}}\right)}=\frac{60}{0.53044}=113.11$ grams (Answer).

* Median: "when the observation are arranged in ascending or descending order, then a value, that divides a distribution into equal parts, is called median"

Median in case of Ungrouped Data	
In this case we first arrange the observations in increasing or decreasing order then we use the following formulae for Median:	
If " n " is odd	Median $=$ size of $\left(\frac{n+1}{2}\right)$ th observation
	If " n " is even
Median $=\frac{\text { size of }\left\{\left(\frac{n}{2}\right) t h+\left(\frac{n}{2}+1\right) \text { th }\right\} \text { observation }}{2}$	

> Numerical example of median for both grouped and ungrouped data:
If " n " is odd \quad Median =size of $\left(\frac{n+1}{2}\right)$ th observation
$>$ Calculate the median for the following the marks obtained by 9 students are given below:

Arrange the

| x_{i} | 45 | 32 | 37 | 46 | 39 | 36 | 41 | 48 | 36 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | data in

ascending order
32, 36, 36, 37, 39, 41, 45, 46, 48. $n=9$ " n " is odd
Median $=$ Size of $\left(\frac{n+1}{2}\right)^{\text {th }}$ observation
Median $=$ Size of $\left(\frac{9+1}{2}\right)^{\text {th }}$ observation
Median $=$ Size of $5^{\text {th }}$ observation
Median $=39 \quad$ (Answer).
If " n " is even \mid Median $=\frac{\text { size of }\left\{\left(\frac{n}{2}\right) t h+\left(\frac{n}{2}+1\right) t h\right\} \text { observation }}{2}$
$>$ Calculate the median for the following the marks obtained by 10 students are given below:

x_{i}	45	32	37	46	39	36	41	48	36	50

Arrange the data in ascending order
32, 36, 36, 37, 39, 41, 45, 46, 48, 50. $n=10$ " n " is even

$$
\begin{gathered}
\text { Median }=\frac{\text { Size of }\left\{\left(\frac{n}{2}\right)^{\text {th }}+\left(\frac{n}{2}+1\right)^{\text {th }}\right\} \text { observation }}{2} \\
\text { Median }=\frac{\text { Size of }\left\{\left(\frac{10}{2}\right)^{\text {th }}+\left(\frac{10}{2}+1\right)^{\text {th }}\right\} \text { observation }}{2} \\
\text { Median }=\frac{\text { Size of }\left\{5^{\text {th }}+6^{\text {th }}\right\} \text { observation }}{2} \\
\text { Median }=\frac{39+41}{2}=40 \quad \text { (Answer). }
\end{gathered}
$$

- The number of values above the median balances (equals) the number of values below the median i.e. 50% of the data falls above and below the median.

Median in case of Discrete Grouped Data

In case of discrete grouped data, first we find the cumulative frequencies and then use the following formula for Median:

$$
\text { Median }=\text { size of }\left(\frac{n+1}{2}\right) \text { th observation }
$$

Here $n=\sum f$

* Numerical examples: The following distribution relates to the number of assistants in 50 retail establishments.

No.of assistant	0	1	2	3	4	5	6	7	8	9
f	3	4	6	7	10	6	5	5	3	1

No. of assistants	f_{i}	Cumulative frequency ($c . f$)
0	3	3
1	4	7
2	6	13
3	7	20
4	10	30
5	6	36
6	5	41
7	5	46
8	3	49
9	1	50
	$\sum_{i=1}^{n} f_{i}=50$	

$n=\sum_{i=1}^{n} f_{i}=50 \quad$ " n " is even

$$
\begin{aligned}
\text { Median } & =\frac{\text { Size of }\left\{\left(\frac{n}{2}\right)^{\text {th }}+\left(\frac{n}{2}+1\right)^{\text {th }}\right\} \text { observation }}{2} \\
\text { Median } & =\frac{\text { Size of }\left\{\left(\frac{50}{2}\right)^{\text {th }}+\left(\frac{50}{2}+1\right)^{\text {th }}\right\} \text { observation }}{2}
\end{aligned}
$$

$$
\text { Median }=\frac{\text { Size of }\left\{25^{\text {th }}+26^{\text {th }}\right\} \text { observation }}{2}
$$

$$
\text { Median }=\frac{4+4}{2}=4 \quad \text { (Answer). }
$$

Median in case of continuous Grouped Data

In continuous grouped data, when we are finding median, we first construct the class boundaries if the classes are discontinuous. Then we find cumulative frequencies and then we use the following two steps:

- First we determine the median class using $n / 2$.
- When the median class is determined, then the following formula is used to find the value of median. i.e.

$$
\text { Median }=l+\frac{h}{f}\left(\frac{n}{2}-C\right) ; \quad \text { Here } n=\sum f
$$

Where $\quad \mathrm{l}=$ lower class boundary of the median class
$h=$ width of the median class
$\mathrm{f}=$ frequency of the median class
$\mathrm{C}=$ cumulative frequency of the class preceding the median class.

* Numerical example: Find the median, for the distribution of examination marks given below:

Marks	$30--39$	$40--49$	$50--59$	$60--69$	$70--79$	$80--89$	$90--99$
Number of students	08	87	190	304	211	85	20

$$
\text { Median }=l+\frac{h}{f}\left(\frac{n}{2}-C\right) \quad \text { here } n=\sum_{i=1}^{n} f_{i}
$$

Class boundaries	Midpoints $\left(x_{i}\right)$	Frequency $\left(f_{i}\right)$	Cumulative frequency $(c . f)$
$29.5---39.5$	34.5	8	8
$39.5---49.5$	44.5	87	95
$49.5---59.5$	54.5	190	285
$59.5---69.5$	64.5	304	589
$69.5---79.5$	74.5	211	800
$79.5--89.5$	84.5	85	885
$89.5--99.5$	94.5	20	905
		$\sum_{i=1}^{n} f_{i}=905$	

$\frac{n}{2}=\frac{905}{2}=452.5^{\text {th }}$ student which corresponds to marks in the class 59.5---69.5
Therefore
Median $=l+\frac{h}{f}\left(\frac{n}{2}-C\right)=59.5+\frac{10}{304}\left(\frac{905}{2}-285\right)=59.5+\frac{10}{304}(452.5-285)$ Median $=59.5+\frac{1675}{304}$, Median $=59.5+5.5$, Median $=65$ marks \quad (Answer).

* Quartiles: "when the observation are arranged in increasing order then the values, that divide the whole data into four (4) equal parts, are called quartiles"

These values are denoted by $\mathrm{Q}_{1}, \mathrm{Q}_{2}$ and Q_{3}. It is to be noted that 25% of the data falls below $\mathrm{Q}_{1}, 50 \%$ of the data falls below Q_{2} and 75% of the data falls below Q_{3}.

* Deciles: "when the observation are arranged in increasing order then the values, that divide the whole data into ten (10) equal parts, are called quartiles"

These values are denoted by $D_{1}, D_{2}, \ldots, D_{9}$. It is to be noted that 10% of the data falls below $\mathrm{D}_{1}, 20 \%$ of the data falls below D_{2}, \ldots, and 90% of the data falls below D_{9}.

* Percentiles: "when the observation are arranged in increasing order then the values, that divide the whole data into hundred (100) equal parts, are called quartiles"

These values are denoted by $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{99}$. It is to be noted that 1% of the data falls below $\mathrm{P}_{1}, 2 \%$ of the data falls below P_{2}, \ldots, and 99% of the data falls below P_{99}.

Measures	Data Type	Formulas
Quartiles$j=1,2,3$	Ungrouped Data	$Q_{j}=$ size of $\left(\frac{j(n+1)}{4}\right)$ th observation
	Discrete Grouped data	$Q_{j}=$ size of $\left(\frac{j(n+1)}{4}\right)$ th observation ; Here $n=\sum f$
Deciles$j=1,2, \ldots, 9$	Ungrouped Data	$D_{j}=$ size of $\left(\frac{j(n+1)}{10}\right)$ th observation
	Discrete Grouped data	$D_{j}=$ size of $\left(\frac{j(n+1)}{10}\right)$ th observation ; Here $n=\sum f$
Percentiles$\begin{gathered} \mathrm{j}=1,2, . \\ ., 99 \end{gathered}$	Ungrouped Data	$P_{j}=$ size of $\left(\frac{j(n+1)}{100}\right)$ th observation
	Discrete Grouped data	$P_{j}=$ size of $\left(\frac{j(n+1)}{100}\right)$ th observation $;$ Here $n=\Sigma f$

Median $=Q_{2}=D_{5}=P_{50}$ are same and are equal to median.
$>$ Calculate quartiles for ungrouped data.
> Calculate the quartiles for the following the marks obtained by 9 students are given below:

$$
\begin{array}{|l|lllllllll|}
\hline x_{i} & 45 & 32 & 37 & 46 & 39 & 36 & 41 & 48 & 36 \\
\hline
\end{array}
$$

Arranged the observation in ascending order

$$
32,36,36,37,39,41,45,46,48 .
$$

If " n " is odd then we use the below formula:
$Q_{j}=$ Marks obtained by $\left[\left(\frac{j n}{4}\right)+1\right]^{\text {th }}$ student, generalized formula of quartiles where $j=1,2,3$.

Put $j=1, \quad n=9, \quad Q_{1}=$ Marks obtained by $\left[\left(\frac{n}{4}\right)+1\right]^{\text {th }}$ student

$$
\begin{aligned}
& Q_{1}=\text { Marks obtained by }\left[\left(\frac{9}{4}\right)+1\right]^{\text {th }} \text { student } \\
& Q_{1}=\text { Marks obtained by }[2.25+1]^{\text {th }} \text { student }
\end{aligned}
$$

$$
\begin{aligned}
& Q_{1}=\text { Marks obtained by }[2+1]^{\text {th }} \text { student } \\
& Q_{1}=\text { Marks obtained by } 3^{\text {th }} \text { student } \\
& Q_{1}=36 \quad \text { (Answer). }
\end{aligned}
$$

Calculate Q_{2} and Q_{3} from above distribution?

* Calculate quartiles for discrete grouped data.

$$
Q_{3}=\text { Marks obtained by }\left[\left(\frac{3 n}{4}\right)+1\right]^{\text {th }} \text { student }
$$

No. of assistants	f_{i}	Cumulative frequency (c.f)
0	3	3
1	4	7
2	6	13
3	7	20
4	10	30
5	6	36
6	5	41
7	5	46
8	3	49
9	1	50
	$\sum_{i=1}^{n} f_{i}=50$	

$$
\begin{aligned}
& Q_{3}=\text { Marks obtained by }\left[\left(\frac{3 \times 50}{4}\right)+1\right]^{\text {th }} \text { student } \\
& Q_{3}=\text { Marks obtained by }\left[\left(\frac{150}{4}\right)+1\right]^{\text {th }} \text { student }
\end{aligned}
$$

$$
Q_{3}=\text { Marks obtained by } 38^{\text {th }} \text { student }
$$

$$
Q_{3}=6 \quad \text { (Answer). }
$$

$>$ Calculate Decile for ungrouped data.

$>$ Calculate the Decile for the following the marks obtained by 9 students are given below:

x_{i}	45	32	37	46	39	36	41	48	36

Arranged the observation in ascending order
$32,36,36,37,39,41,45,46,48$.
If " n " is odd then we use the below formula:
$D_{j}=$ Marks obtained by $\left[\left(\frac{j n}{10}\right)+1\right]^{\text {th }}$ student, generalized formula of quartiles where $j=1,2,3,4,5,6,7,8,9$.

Put $j=4, \quad n=9, \quad D_{4}=$ Marks obtained by $\left[\left(\frac{4 n}{10}\right)+1\right]^{\text {th }}$ student

$$
D_{4}=\text { Marks obtained by }\left[\left(\frac{4 \times 9}{10}\right)+1\right]^{\text {th }} \text { student }
$$

$$
D_{4}=\text { Marks obtained by }[3.6+1]^{\text {th }} \text { student }
$$

$$
D_{4}=\text { Marks obtained by }[3+1]^{\text {th }} \text { student }
$$

$$
D_{4}=\text { Marks obtained by } 4^{\text {th }} \text { student }
$$

$$
D_{4}=37 \quad \text { (Answer). }
$$

Calculate D_{3}, D_{7} and D_{9} from above distribution?

* Calculate decile for discrete grouped data.

$$
D_{6}=\text { Marks obtained by }\left[\left(\frac{6 n}{10}\right)+1\right]^{\text {th }} \text { student }
$$

No. of assistants	f_{i}	Cumulative frequency ($c . f$)
0	3	3
1	4	7
2	6	13
3	7	20
4	10	30
5	6	36
6	5	41
7	5	46
8	3	49
9	1	50
	$\sum_{i=1}^{n} f_{i}=50$	

$$
D_{6}=\text { Marks obtained by }\left[\left(\frac{6 \times 50}{10}\right)+1\right]^{\text {th }} \text { student }
$$

$$
\begin{gathered}
D_{6}=\text { Marks obtained by }\left[\left(\frac{300}{10}\right)+1\right]^{\text {th }} \text { student } \\
D_{6}=\text { Marks obtained by } 31^{\text {th }} \text { student } \\
Q_{3}=5 \quad \text { (Answer). }
\end{gathered}
$$

$>$ Calculate percentile for ungrouped data.

$>$ Calculate the percentile for the following the marks obtained by 9 students are given below:

x_{i}	45	32	37	46	39	36	41
			78	36			

Arranged the observation in ascending order
$32,36,36,37,39,41,45,46,48$.

If " n " is odd then we use the below formula:
$P_{j}=$ Marks obtained by $\left[\left(\frac{j n}{100}\right)+1\right]^{\text {th }}$ student , generalized formula of quartiles where $j=1,2, \ldots, 99$.

Put $j=68, \quad n=9, \quad P_{68}=$ Marks obtained by $\left[\left(\frac{68 n}{100}\right)+1\right]^{\text {th }}$ student
$P_{68}=$ Marks obtained by $\left[\left(\frac{68 \times 9}{100}\right)+1\right]^{\text {th }}$ student
$P_{68}=$ Marks obtained by $[6.12+1]^{\text {th }}$ student
$P_{68}=$ Marks obtained by $[6+1]^{\text {th }}$ student
$P_{68}=$ Marks obtained by $7^{\text {th }}$ student
$D_{4}=45 \quad$ (Answer).
Calculate P_{9}, P_{55}, P_{80} and P_{95} from above distribution?

* Calculate percentile for discrete grouped data.

$$
P_{49}=\text { Marks obtained by }\left[\left(\frac{49 n}{100}\right)+1\right]^{\text {th }} \text { student }
$$

No. of assistants	f_{i}	Cumulative frequency (c.f)
0	3	3
1	4	7
2	6	13
3	7	20
4	10	30
5	6	36
6	5	41
7	5	46
8	3	49
9	1	50
	$\sum_{i=1}^{n} f_{i}=50$	

$$
\begin{gathered}
P_{49}=\text { Marks obtained by }\left[\left(\frac{49 \times 50}{100}\right)+1\right]^{\text {th }} \text { student } \\
P_{49}=\text { Marks obtained by }\left[\left(\frac{2450}{100}\right)+1\right]^{\text {th }} \text { student }
\end{gathered}
$$

$$
P_{49}=\text { Marks obtained by } 24^{\text {th }} \text { student }
$$

$$
Q_{3}=4 \quad \text { (Answer). }
$$

Continuous Grouped Data

In continuous grouped data, we use the following two steps:

- First we determine the $\mathrm{j}^{\text {th }}$ quartile class using $\mathrm{jn} / 4$.
- When the $j^{\text {th }}$ quartile class is determined, then the following formula is used to find the value of $\mathrm{j}^{\text {th }}$ quartile i.e.

$$
Q_{j}=l+\frac{h}{f}\left(\frac{j n}{4}-C\right) ; \quad \text { Here } n=\Sigma f
$$

$\mathrm{l}=$ lower class boundary of the $\mathrm{j}^{\text {th }}$ quartile class
$h=$ width of the $j^{\text {th }}$ quartile class
$f=$ frequency of the $j^{\text {th }}$ quartile class
$\mathrm{C}=$ cumulative frequency of the class preceding the $\mathrm{j}^{\text {th }}$ quartile class.

- First we determine the $\mathrm{j}^{\text {th }}$ decile class using $\mathrm{jn} / 10$.
- When the $\mathrm{j}^{\text {th }}$ decile class is determined, then the following formula is used to find the value of the $\mathrm{j}^{\text {th }}$ decile. i.e.

$$
D_{j}=l+\frac{h}{f}\left(\frac{j n}{10}-C\right) ; \quad \text { Here } n=\Sigma f
$$

$1=$ lower class boundary of the $\mathrm{j}^{\text {th }}$ decile class
$h=$ width of the $j^{\text {th }}$ decile class
$\mathrm{f}=$ frequency of the $\mathrm{j}^{\text {th }}$ decile class
$C=$ cumulative frequency of the class preceding the $\mathrm{j}^{\text {th }}$ decile class.

- First we determine $\mathrm{j}^{\text {th }}$ percentile class using $\mathrm{j} \mathrm{n} / 100$.
- When the $\mathrm{j}^{\text {th }}$ percentile class is determined, then the following formula is used to find the value of the $\mathrm{j}^{\text {th }}$ percentile. i.e.

Percentiles

$$
P_{j}=l+\frac{h}{f}\left(\frac{j n}{100}-C\right) ; \quad \text { Here } n=\Sigma f
$$

$\mathrm{l}=$ lower class boundary of the $\mathrm{j}^{\text {th }}$ percentile class
$h=$ width of the $j^{\text {th }}$ percentile class
$f=$ frequency of the $j^{\text {th }}$ percentile class
$\mathrm{C}=$ cumulative frequency of the class preceding the $\mathrm{j}^{\text {th }}$ percentile class.

* Numerical example of Quartile, Decile and Percentile for continuous grouped data:

Class boundaries	Midpoints $\left(x_{i}\right)$	Frequency $\left(f_{i}\right)$	Cumulative frequency $(c . f)$
$29.5---39.5$	34.5	8	8
$39.5---49.5$	44.5	87	95
$49.5---59.5$	54.5	190	285
$59.5---69.5$	64.5	304	589
$69.5---79.5$	74.5	211	800
$79.5---89.5$	84.5	85	885
$89.5---99.5$	94.5	20	905
		$\sum_{i=1}^{n} f_{i}=905$	

Calculate the $3^{\text {rd }}$ quartile

$$
\begin{gathered}
Q_{2}=l+\frac{h}{f}\left(\frac{3 n}{4}-C\right) \\
\frac{3 n}{4}=\frac{3 \times 905}{4}=678.75 \\
Q_{2}=69.5+\frac{10}{211}(678.75-589) \\
Q_{2}=69.5+\frac{897.5}{211} \\
Q_{2}=73.7535 \quad \text { (Answer) }
\end{gathered}
$$

Calculate the $4^{\text {th }}$ and $8^{\text {th }}$ decile

$$
\begin{gathered}
D_{4}=l+\frac{h}{f}\left(\frac{4 n}{10}-C\right) \\
\frac{4 n}{10}=\frac{4 \times 905}{10}=362 \\
D_{4}=59.5+\frac{10}{304}(362-285) \\
D_{4}=59.5+\frac{770}{304} \\
D_{4}=62.0328 \quad \text { (Answer) } \\
D_{8}
\end{gathered}=l+\frac{h}{f}\left(\frac{8 n}{10}-C\right) \quad \begin{gathered}
\frac{8 n}{10}=
\end{gathered}
$$

$$
\begin{gathered}
D_{8}=69.5+\frac{10}{211}(724-589) \\
D_{8}=69.5+\frac{1350}{211} \\
D_{8}=75.8981 \quad \text { (Answer) }
\end{gathered}
$$

Calculate the $18^{\text {th }}$ and $76^{\text {th }}$ Percentile

$$
\begin{gathered}
P_{18}=l+\frac{h}{f}\left(\frac{18 n}{100}-C\right) \\
\frac{18 \times 905}{100}=162.9 \\
P_{18}=49.5+\frac{10}{190}(162.5-95) \\
P_{18}=49.5+\frac{675}{190}=53.05 \quad \text { (Answer). } \\
P_{76}=l+\frac{h}{f}\left(\frac{76 n}{100}-C\right) \\
\frac{76 \times 905}{100}=687.8 \\
P_{76}=69.5+\frac{10}{211}(687.8-589) \\
P_{76}=69.5+\frac{988}{211}=74.182 \quad \text { (Answer). }
\end{gathered}
$$

Calculate $Q_{2}, D_{5}, D_{8}, P_{25}, P_{50}$ and P_{88} ?

Main Objects of Average

- The main object (purpose) of the average is to give a bird's eye view (summary) of the statistical data. The average removes all the unnecessary details of the data and gives a concise (to the point or short) picture of the huge data under investigation.
- Average is also of great use for the purpose of comparison (i.e. the comparison of two or more groups in which the units of the variables are same) and for the further analysis of the data.
- Averages are very useful for computing various other statistical measures such as dispersion, skewness, kurtosis etc.
* Requisites (desirable qualities) of a Good Average: An average will be considered as good if:
- It is mathematically defined.
- It utilizes all the values given in the data.
- It is not much affected by the extreme values.
- It can be calculated in almost all cases.
- It can be used in further statistical analysis of the data.
- It should avoid to give misleading results.

* Uses of Averages in Different Situations

- A.M is an appropriate average for all the situations where there are no extreme values in the data.
- G.M is an appropriate average for calculating average percent increase in sales, population, production, etc. It is one of the best averages for the construction of index numbers.
- H.M is an appropriate average for calculating the average rate of increase of profits of a firm or finding average speed of a journey or the average price at which articles are sold.
- Mode is an appropriate average in case of qualitative data e.g. the opinion of an average person; he is probably referring to the most frequently expressed opinion which is the modal opinion.
- Median is an appropriate average in a highly skewed distribution e.g. in the distribution of wages, incomes etc.

Mode in case of Ungrouped Data: "A value that occurs most frequently in a data is called mode"

OR
"if two or more values occur the same number of times but most frequently than the other values, the there is more than one whole"
"If two or more values occur the same number of times but most frequently than the other values, then there is more than one mode"

- The data having one mode is called uni-modal distribution.
- The data having two modes is called bi-modal distribution.
- The data having more than two modes is called multi-modal distribution.

Mode in case of Discrete Grouped Data: "A value which has the largest frequency in a set of data is called mode"

Mode in case of Continuous Grouped Data: In case of continuous grouped data, mode would lie in the class that carries the highest frequency. This class is called the modal class. The formula used to compute the value of mode, is given below:

[^0]> Calculate Mode for ungrouped data
\[

$$
\begin{aligned}
& x_{i}: 2,3,8,4,6,3,2,5,3 . \\
& \text { Mode }=3 \quad \text { (Answer). }
\end{aligned}
$$
\]

> Calculate Mode in discrete grouped data

No. of assistants	f_{i}
0	3
1	4
2	6
3	7
4	10
5	6
6	5
7	5
8	3
9	1
	$\sum_{i=1}^{n} f_{i}=50$

$$
\text { Mode }=4
$$

$>$ Mode in case of Continuous grouped data:

Class boundaries	Midpoints $\left(x_{i}\right)$	Frequency $\left(f_{i}\right)$	Cumulative frequency $(c . f)$
$29.5---39.5$	34.5	8	8
$39.5---49.5$	44.5	87	95
$49.5---59.5$	54.5	190	285
$59.5---69.5$	64.5	304	589
$69.5---79.5$	74.5	211	800
$79.5---89.5$	84.5	85	885
$89.5---99.5$	94.5	20	905
		$\sum_{i=1}^{n} f_{i}=905$	

Mode $=l+\frac{f_{m}-f_{1}}{\left(f_{m}-f_{1}\right)+\left(f_{m}-f_{2}\right)} \times h=59.5+\frac{304-190}{(304-190)+(304-211)} \times 10$
Mode $=59.5+\frac{114}{114+93} \times 10 \quad \Rightarrow$ Mode $=59.5+5.05072$

Mode $=4 \quad$ (Answer)

Q: What is a measure of location? What is the purpose served by it? What

 are its desirable qualities?Measure of location: A central value that represents the whole data is called an average. Since average is a value usually somewhere in the center and represents the entire data set therefore it is called measure of central tendency. Measure of central tendency indicates the location or the general position of the data on the X -axis therefore it is also known as a measure of location or position

Purpose:

- It removes all the unnecessary details of the data and gives a concise picture of the huge data.
- It is used for the purpose of comparison.
- It is very useful in computing other statistical measures such as dispersion, skewness and kurtosis etc.

Desirable qualities of a good average: An average will be considered as good if:

- It is mathematically defined.
- It utilizes all the observations given in a data.
- It is not much affected by the extreme values.
- It is capable of further algebraic treatment.
- It is not affected by fluctuations of sampling.

[^0]: * Numerical examples of Mode for ungrouped and grouped data

