
RS- Chapter 4 1

Mathematics for Economists

Chapters 4-5
Linear Models and Matrix Algebra

Johann Carl Friedrich Gauss (1777–1855)
The Nine Chapters on the Mathematical Art
(1000-200 BC)

Objectives of Math for Economists

 To study economic problems with the formal tools of math.

 To understand mathematical economics problems by stating the
unknown, the data and the restrictions/conditions.

 To plan solutions to these problems by finding a connection
between the data and the unknown

 To carry out your plans for solving mathematical economics
problems

 To examine the solutions to mathematical economics problems
for general insights into current and future problems.

 Remember: Math econ is like love – a simple idea but it can get
complicated.

2

RS- Chapter 4 2

4. Linear Algebra

 Some early history:

 The beginnings of matrices and determinants goes back to the
second century BC although traces can be seen back to the fourth
century BC. But, the ideas did not make it to mainstream math
until the late 16th century

 The Babylonians around 300 BC studied problems which lead to
simultaneous linear equations.

 The Chinese, between 200 BC and 100 BC, came much closer to
matrices than the Babylonians. Indeed, the text Nine Chapters on the
Mathematical Art written during the Han Dynasty gives the first
known example of matrix methods.

 In Europe, 2x2 determinants were considered by Cardano at the
end of the 16th century and larger ones by Leibniz and, in Japan, by
Seki about 100 years later.

4. What is a Matrix?

 A matrix is a set of elements, organized into rows and columns









dc

ba

rows

columns

• a and d are the diagonal elements.
• b and c are the off-diagonal elements.

• Matrices are like plain numbers in many ways:
they can be added, subtracted, and, in some
cases, multiplied and inverted (divided).

Arthur Cayley (1821 – 1895, England)

RS- Chapter 4 3

4. Matrix: Details

 Examples:

5

 321
2212

2111 ; bbbb
aa

aa
A 










• Dimensions of a matrix: numbers of rows by numbers of
columns. The Matrix A is a 2x2 matrix, b is a 1x3 matrix.

• A matrix with only 1 column or only 1 row is called a vector.

• If a matrix has an equal numbers of rows and columns, it is
called a square matrix. Matrix A, above, is a square matrix.

• Usual Notation: Upper case letters  matrices
Lower case  vectors

 In econometrics, we have data, say T (or N) observations, on a
dependent variable, Y, and on k explanatory variables, X.

 Under the usual notation, vectors will be column vectors: y and
xk are Tx1 vectors:

ܡ ൌ
࢟૚
⋮
ࢀ࢟

	 & xj	ൌ
࢞࢐૚
⋮
ࢀ࢐࢞

	 j = 1,..., k

X is a Txk matrix: X ൌ
࢞૚૚ ⋯ ࢞࢑૚
⋮ ⋱ ⋮
૚ࢀ࢞ ⋯ ࢞࢑૚

Its columns are the k Tx1 vectors xj. It is common to treat x1 as
vector of ones, ί.

4. Matrix: Details

6

RS- Chapter 4 4

4.1 Special Matrices: Identity and Null

































000

000

000

100

010

001 Identity Matrix: A square matrix with 1’s along
the diagonal and 0’s everywhere else. Similar to
scalar “1.”

 Null matrix: A matrix in which all elements are
0’s. Similar to scalar “0.”

 Both are diagonal matrices  off-diagonal
elements are zero.

7

 Both are examples of symmetric and idempotent matrices. As we will
see later:

- Symmetric: A = AT

- Idempotent: A = A2 = A3 = …

4.1 Matrix: Elementary Row Operations

8

• Elementary row operations:
- Switching: Swap the positions of two rows
- Multiplication: Multiply a row by a non-zero scalar
- Addition: Add to one row a scalar multiple of another.

• An elementary matrix is a matrix which differs from the identity
matrix by one single elementary row operation.

• If the matrix subject to elementary row operations is associated
to a system of linear equations, then these operations do not
change the solution set. Row operations can make the problem
easier.

• Elementary row operations are used in Gaussian elimination to
reduce a matrix to row echelon form.

RS- Chapter 4 5

4.1 Matrix multiplication: Details

 Multiplication of matrices requires a conformability condition
 The conformability condition for multiplication is that the

column dimensions of the lead matrix A must be equal to the
row dimension of the lag matrix B.

 If A is an (mxn) and B an (nxp) matrix (A has the same number
of columns as B has rows), then we define the product of AB.
AB is (mxp) matrix with its ij-th element is

 What are the dimensions of the vector, matrix, and result?

   131211
232221

131211

1211 cccc
bb

bbb
aaaB 














 231213112212121121121111 babababababa 

• Dimensions: a(1x2), B(2x3)  c(1x3)

jk

n

j ijba 1

9

4.1 Transpose Matrix


























 


49

08

13

4 01

983
AA:Example

 The transpose of a matrix A is another matrix AT (also written
A′) created by any one of the following equivalent actions:

- write the rows (columns) of A as the columns (rows) of AT

- reflect A by its main diagonal to obtain AT

 Formally, the (i,j) element of AT is the (j,i) element of A:

[AT]ij = [A]ji
 If A is a m × n matrix  AT is a n × m matrix.

 (A')' = A

 Conformability changes unless the matrix is square.

10

RS- Chapter 4 6

 In econometrics, an important matrix is X’X. Recall X:

X ൌ
࢞૚૚ ⋯ ࢞࢑૚
⋮ ⋱ ⋮
૚ࢀ࢞ ⋯ ࢞࢑૚

a (Txk) matrix

Then,

X’ ൌ
࢞૚૚ ⋯ ૚ࢀ࢞
⋮ ⋱ ⋮
૚ࢀ࢞ ⋯ ࢞࢑૚

a (kxT) matrix

4.1 Transpose Matrix: Example – X’

11

4.1 Basic Operations

 Addition, Subtraction, Multiplication




























hdgc

fbea

hg

fe

dc

ba




























hdgc

fbea

hg

fe

dc

ba




























dhcfdgce

bhafbgae

hg

fe

dc

ba

Just add elements

Just subtract elements

Multiply each row by
each column and add


















kdkc

kbka

dc

ba
k Multiply each

element by the scalar
12

RS- Chapter 4 7

4.1 Basic Matrix Operations: Examples

222222

117

25

20

13

97

12

xxx CBA 



























 Matrix addition

 Matrix subtraction

 Matrix multiplication

 Scalar multiplication

13



























65

11

32

01

97

12

222222 x

2726

34

32

01
x

97

12

xxx CBA 












































8143

2141

16

42

8

1

13

4.1 Basic Matrix Operations: X′X

 A special matrix in econometrics, X′X (a kxk matrix):

 Recall X (Txk): X=
࢞૚૚ ⋯ ࢞࢑૚
⋮ ⋱ ⋮
࢞૚ࢀ ⋯ ࢀ࢑࢞

& X’ ൌ
࢞૚૚ ⋯ ࢞૚ࢀ
⋮ ⋱ ⋮
࢞࢑૚ ⋯ ࢀ࢑࢞

2 2
1 1 1 1 2 1 1 1 1 2 1

2 2
1 2 1 1 2 1 2 2 1 2 2

1

2
1 1 1 2 1 1 2

... ...

... ...
=

...

...

  

  


  

   
     
 
 
    

n n n
i i i i i i i iK i i i i iK

n n n
ni i i i i i i iK i i i i iK
i

n n n
i iK i i iK i i iK iK i iK i

x x x x x x x x x x

x x x x x x x x x x

x x x x x x x x x

X'X =

 

2

1

2
1 1 2

1

...

 = ...
...

 =





 
 
 
 
 
  

 
 
 
 
 
 


iK

i

in
i i i iK

ik

n
i i i

x

x

x
x x x

x

x x
14

RS- Chapter 4 8

4.1 Basic Matrix Operations: ί′X

 Recall ί is a column vector of ones (in this case, a Tx1 vector):

ί =

1
1
…
1

 Given X (Txk), then ί’ X is a 1xk vector:

ί’X ൌ 1 … 1
࢞૚૚ ⋯ ࢞࢑૚
⋮ ⋱ ⋮
࢞૚ࢀ ⋯ ࢀ࢑࢞

= ∑ ࢞૚࢚
ࢀ
࢚ୀ૚ … ∑ ࢞࢑࢚

ࢀ
࢚ୀ૚

Note: If x1 is a vector of ones (representing a constant in the
linear classical model), then:

ί’ x1 = ∑ ࢞૚࢚
ࢀ
࢚ୀ૚ = ∑ ࢀ1

࢚ୀ૚ = T (“dot product”)
15

4.1 Basic Matrix Operations: R

 Many ways to create a vector (c, 2:7, seq, rep, etc) or a matrix (c,
cbind, rbind). Usually, matrices will be data –i.e., read as inpu:

> v <- c(1, 3, 5)

> v

[1] 1 3 5

> A <- matrix(c(1, 2, 3, 7, 8, 9), ncol = 3)

> A

[,1] [,2] [,3]

[1,] 1 3 8

[2,] 2 7 9

> B <- matrix(c(1, 3, 1, 1, 2, 0), nrow = 3)

> B

[,1] [,2]

[1,] 1 1

[2,] 3 2

[3,] 1 0 16
16

RS- Chapter 4 9

4.1 Basic Matrix Operations: R

 Matrix addition/substraction: +/- --element by element

 Matrix multiplication: %*%
> C <- A%*%B #A is 2x3; B is 3x2

> C

[,1] [,2]

[1,] 18 7

[2,] 32 16

 Scalar multiplication: * --elementwise multiplication of two
matrices/vectors

> 2*C

[,1] [,2]

[1,] 36 14

[2,] 64 32 17
17

4.1 Basic Matrix Operations: R

 Matrix transpose: t
> t(B) #B is 3x2; t(B) is 2x3

[,1] [,2] [,3]

[1,] 1 3 1

[2,] 1 2 0

 X'X
> t(B)%*%B # command crossprod(B) is more efficient

[,1] [,2]

[1,] 11 7

[2,] 7 5

 dot product
> i <- c(1,1,1); t(i)%*%v # v <- c(1, 3, 5)

[,1]

[1,] 9
18

18

RS- Chapter 4 10

4.1 Laws of Matrix Addition & Multiplication































22222121

12121111

2221

1211

2221

1211

abaa

abba

bb

bb

aa

aa
BA

 Commutative law of Matrix Addition: A + B = B + A































22222121

12121111

2221

1211

2221

1211

abab

abab

bb

aa

bb

bb
AB

 Matrix Multiplication is distributive across Additions:

A (B+ C) = AB + AC (assuming comformability applies).

19

4.1 Matrix Multiplication

 Matrix multiplication is generally not commutative. That is,

AB  BA even if BA is conformable
(because different dot product of rows or col. of A&B)








 











76

10
,

43

21
BA

       
        





















2524

1312

74136403

72116201
AB

        
        







 













4027

43

47263716

41203110
BA

20

RS- Chapter 4 11

4.1 Matrix multiplication

 Exceptions to non-commutative law:

AB=BA iff

B = a scalar,

B = identity matrix I, or

B = the inverse of A -i.e., A-1

 Theorem: It is not true that AB = AC => B=C

Proof:
































 





















132

111

212

;

011

010

111

;

321

101

121

CBA

Note: If AB = AC for all matrices A, then B = C.
21

4.1 Inverse of a Matrix

 Identity matrix: AI = A


















100

010

001

3I

Notation: Ij is a jxj identity matrix.

 Given A (mxn), the matrix B (nxm) is a right-inverse for A iff

AB = Im

 Given A (mxn), the matrix C (mxn) is a left-inverse for A iff

CA = In

22

RS- Chapter 4 12

4.1 Inverse of a Matrix

 Theorem: If A (mxn), has both a right-inverse B and a left-inverse C,
thenC = B.

Proof:

We have AB=Im and CA=In.

Thus,

C(AB)= C Im = C and C(AB)=(CA)B= InB = B

⇒ C(nxm)=B(mxn)

Note:

- This matrix is unique. (Suppose there is another left-inverse D,
then D=B by the theorem, so D=C.).

- If A has both a right and a left inverse, it is a square matrix. It
is usually called invertible. We say “the matrix A is non-singular.”

4.1 Inverse of a Matrix

 Inversion is tricky:
(ABC)-1 = C-1B-1A-1

 Theorem: If A (mxn) and B (nxp) have inverses, then AB is
invertible and (AB)-1 = B-1A-1

Proof:

We have AA-1=Im and A-1A=In

BB-1=In and B-1B=Ip

Thus,

B-1A-1(AB) = B-1 (A-1A) B= B-1 InB = B-1 B = Ip

(AB) B-1A-1 = A (BB-1) A-1 = A In A-1 = A A-1 = Im

⇒ AB is invertible and (AB)-1 = B-1A-1

 More on this topic later. 24

RS- Chapter 4 13

4.1 Transpose and Inverse Matrix

 (A + B)' = A' + B'

 If A' = A, then A is called a symmetric matrix.

 Theorems:

- Given two comformable matrices A and B, then (AB)' = B'A'

- If A is invertible, then (A-1)' = (A')-1 (and A' is also invertible).

25

4.1 Partitioned Matrix

 A partitioned matrix is a matrix which has been broken into
sections called blocks or submatrices by horizontal and/or vertical
lines extending along entire rows or columns. For example, the
3xm matrix can be partitioned as:

 Augmented matrices are also partitioned matrices. They have
been partitioned vertically into two blocks.

 Partitioned matrices are used to simplify the computation of
inverses.
































))2x(1()2x1(

))2x(2()2x2(

|

|

|

|

2221

1211

33231

22221

11211

mAA

mAA

aaa

aaa

aaa

m

m

m






26

RS- Chapter 4 14

4.1 Partitioned Matrix

 If two matrices, A and B, are partitioned the same way, addition
can be done by blocks. Similarly, if both matrices are comformable
partitioned, then multiplication can be done by blocks.

 A block diagonal matrix is a partitioned square matrix, with main
diagonal blocks square matrices and the off-diagonal blocks are
null matrices.

Nice Property: The inverse of a block diagonal matrix is just the
inverse of each block.

27













































1

1
2

1
1

2

1

00

00

00

00

00

00

nn A

A

A

A

A

A













4.1 Partitioned Matrix: Partitioned OLS Solution

 In the Classical Linear Model, we have the OLS solution:

 Use of the partitioned inverse result produces a fundamental
result, the Frisch-Waugh (1933) Theorem: To calculate b2 (or b1)
we do not need to invert the whole matrix. For this result, we need
the southeast element in the inverse of (X′X)-1:

 With the partitioned inverse, we get:
b2 = []-1(2,1) X1′y + []-1(2,2) X2′y
































yX

yX

XXXX

XXXX

b

b
yXXXb

'

'

''

''
')'(

2

1

1

2212

2111

2

11

 
 
 

1 1 1 2

2 1 2 2

-1
X 'X X 'X

X 'X X 'X

[]-1(2,2)

28

[]-1(2,1)

RS- Chapter 4 15

4.1 Partitioned Matrix: Partitioned OLS Solution

 From partitioned inverse: b2 = []-1(2,1) X1′y + []-1(2,2) X2′y

 As we will derive later:

1
212

1
21

1
1112

1
21

1
111222

1
1112

21
1

11
1

111221
1

11
1

11

2212

2111

]'[

])')'(('[]')'(''[where

)'('

')'()'('')'()'(
 Inverse .2

''

''
XX'Matrix .1








































XMXD

XXXXXIXXXXXXXXXD

DXXXDX

DXXXXXXXDXXXXXXX

XXXX

XXXX

 The algebraic result is: []-1
(2,1) = -D X2’X1(X1’X1)-1

[]-1(2,2) = D = [X2’M1X2]-1

 b2 = []-1(2,1) X1′y + []-1(2,2) X2′y = [X2′M1X2]-1X2′M1y

4.1 Properties of Symmetric Matrices

 Definition:

If A' = A, then A is called a symmetric matrix.

 Theorems:

- If A and B are nxn symmetric matrices, then (AB)' = BA

- If A and B are nxn symmetric matrices, then (A+B)' = B+A

- If C is any nxn matrix, then B = C'C is symmetric.

 Useful symmetric matrices:

V = X’X

P = X(X’X)-1X’ P: Projection matrix

M = I – P = I - X(X’X)-1X’ M: Residual maker

30

RS- Chapter 4 16

4.1 Application 1: Linear System

 There is a functional form relating a dependent variable, y, and k
explanatory variables, X. The functional form is linear, but it
depends on k unknown parameters, . The relation between y and
X is not exact. There is an error, . We have T observations of y
and X.

 Then, the data is generated according to:

yi = Σj=1,..k xk,i k + i i=1, 2,, T.

Or using matrix notation:

y = X  + 
where y &  are (Tx1); X is (Txk); and  is (kx1).

 We will call this relation data generating process (DGP).

 The goal of econometrics is to estimate the unknown vector . 31

4.1 Application 2: System of Equations

 Assume an economic model as system of linear equations with:
aij parameters, where i = 1,.., m rows, j = 1,.., n columns
xi endogenous variables (n),
di exogenous variables and constants (m).

a11
x1

+ a12
x2

+ ... + a1n
xn = d1

a21
x1

+ a22
x2

+ ... + a2n
xn = d2

....
am1

x1
+ am2

x2
+ ... + amn

xn = dm

 We can write this system using linear algebra notation: A x = d

૚૚ࢇ ⋯ ࢔૚ࢇ
⋮ ⋱ ⋮

૚࢓ࢇ ⋯ ࢔࢓ࢇ

࢞૚
…
࢔࢞

=
૚ࢊ
…
࢓ࢊ

 Q: What is the nature of the set of solutions to this system? 32

d = column vector

A = (mxn) matrix x = column vector

RS- Chapter 4 17

 System of linear equations: Ax = d
where

A = (mxn) matrix of parameters
x = column vector of endogenous variables (nx1)
d = column vector of exogenous variables and constants (mx1)

 Solve for x*

33

 Questions:
- For what combinations of A and d there will zero, one, many or
an infinite number of solutions?
- How do we compute (characterize) those sets of solutions?

4.1 Application 2: System of Equations

4.1 Solution of a General Equation System

 Theorem: Given A (mxn). If A has a right-inverse, then the
equation Ax = d has at least one solution for every d (mx1).

Proof:
Pick an arbitrary d. Let H be a right-inverse (so AH=Im).
Define x*=Hd.
Thus,
Ax* = A Hd = Imd = d => x* is a solution. ■

34

RS- Chapter 4 18

 Theorem: Given A (mxn). If A has a left-inverse, then the
equation Ax=d has at most one solution for every d (mx1). That
is, if Ax=d has a solution x* for a particular d, then x* is unique.

Proof:
Suppose x* is a solution and z* is another solution. Thus, Ax*=d
and Az*=d. Let G be a left-inverse for A (so GA=In).

Ax*=d  GA x*= Gd
 Inx* = x* = Gd.

Az*= d  GA z* = Gd
 Inz* = z* = Gd.

Thus,
x*=z*=Gd. ■

4.1 Solution of a General Equation System

35

 Assume the 2x2 model
2x + y = 12
4x + 2y = 24

Find x*, y*:
y = 12 – 2x
4x + 2(12 – 2x) = 24
4x +24 – 4x = 24
0 = 0 ? indeterminante!

 Why?
4x + 2y =24
2(2x + y) = 2(12)
 one equation with two

unknowns
2x + y = 12

Conclusion: Not all simultaneous
equation models have solutions

(not all matrices have inverses).

 Problem with the previous proof? We’re assuming the left-
inverse exists (and there’s always a solution).

4.1 Solution of a General Equation System

36

RS- Chapter 4 19

 Theorem: Given A (mxn) invertible. Then, the equation Ax = d
has one and only one solution for every d (mx1).

Proof:
Trivial from previous two theorems.

 Given an invertible matrix, A, use the “solve” command:
> A

[,1] [,2]

[1,] 18 7

[2,] 32 16

> d <- c(2, 1)

> x <- solve(A, d)

> x

[1] 0.390625 -0.718750

4.1 Solution of a General Equation System

37

 A set of vectors is linearly dependent if any one of them can be
expressed as a linear combination of the remaining vectors;
otherwise, it is linearly independent.

 Formal definition: Linear independence (LI)

The set {u1,...,uk} is called a linearly independent set of vectors iff

c1 u1+....+ ckuk = θ  c1= c2=...=ck,=0.

 Notes:

- Dependence prevents solving a system of equations. More
unknowns than independent equations.

- The number of linearly independent rows or columns in a matrix
is the rank of a matrix (rank(A)).

38

4.1 Linear dependence and Rank: Example

RS- Chapter 4 20

4.1 Linear dependence and Rank: Example

 Examples:  
 

1)(02

2412

105

2410

125

//
2

/
1

'
2

'
1

'
2

'
1





























Arankvv

v

v
A

v

v

   
 

2)(023

54

162216

23

587

412
;

5

4
;

8

1
;

7

2

321

3

21

321












































Arankvvv

v

vv

Avvv

39

4.2 Application 1: One Commodity Market
Model (2x2 matrix)

 Economic Model

1) Qd = a – bP (a,b >0)

2) Qs = -c + dP (c,d >0)

3) Qd = Qs

 Find P* and Q*

Scalar Algebra form

(Endogenous Vars :: Constants)

4) 1Q + bP = a

5) 1Q – dP = -c

40

db

bcad
Q

db

ca
P











*

*

RS- Chapter 4 21

dAx

c

a

d

b

P

Q

dAx

c

a

P

Q

d

b

1*

1

*

*

1

1

1

1

































































Matrix algebra

4.2 Application 1: One Commodity Market
Model (2x2 matrix)

41

4.2 Application 2: Finite Markov Chains

 Markov processes are used to measure movements over time.

42

   

     

   

 90110

100*6.100*3.,100*4.100*7.
6.4.

3.7.
100100

PP

PP
x

plant?each at be willemployeesmany how year, one of end At the

6.4.

3.7.

PP

PP
M

yprobabilitknown a w/ plantseach between move andstay employees The

100100x

B &A plants over two ddistribute are 0 at time Employees

0000
BBBA

ABAA
00

/
011

BBBA

ABAA

00
/
0












































BBABBAAA PBPBPAPABAMBA

BA

RS- Chapter 4 22

43

     

   

   

 

  k
kk MBA

BAMBA

BAMBA

/
0

BBBA

ABAA

BBBA

ABAA
00

2/
022

BBBA

ABAA
00

/
011

x:yearsk After

87113

90*6.110*3.,90*4.110*7.
6.4.

3.7.
90110

PP

PP

PP

PP
x

90110
PP

PP
x

plant?each at be willemployeesmany how years, twoof end At the













































4.2 Application 2: Finite Markov Chains

4.3 Definite Matrices - Forms

 A form is a polynomial expression in which each component
term has a uniform degree. A quadratic form has a uniform second
degree.

Examples:

9x + 3y + 2z -first degree form.

6x2 + 2xy + 2y2 -second degree (quadratic) form.

x2z + 2yz2 + 2y3 -third degree (cubic) form.

 A quadratic form can be written as: x’A x, where A is a
symmetric matrix.

44

RS- Chapter 4 23

4.3 Definite Matrices - Forms

 For one variable, a quadratic form is the familiar: y = a x2

If a>0, then a x2 is always non-negative, and equals 0 only when
x=0. We call a form like this positive definite.

If a<0, then a x2 is always non-positive, and equals 0 only when
x=0. We call a form like this negative definite.

There are two intermediate cases, where the form can be equal to
0 for some non-zero values of x: negative/positive semidefinite.

 For a general quadratic form, y = x’A x, we say the form is
Positive definite if y is invariably positive (y >0)
Positive semi-definite if y is invariably non-negative (y ≥ 0)
Negative semi-definite if y is invariably non-positive (y ≤ 0)
Negative definite if y is invariably negative (y < 0)
Indefinite if y changes signs.

45

46

4.3 Definite Matrices - Definition
 A quadratic form is said to be indefinite if y changes signs.

 A symmetric (n×n) A is called positive definite (pd), positve semidefinite
(psd), negative semidefinite (nsd) and negative definite (nd) according to the
corresponding sign of the quadratic form, y.

For example, if y = x’A x, is positive, for any non-zero vector x of
n real numbers; we say A is positive definite.

Example: Let A = X′X.

Then, z′A z = z′X′X z = v′v >0. ⇒ X′X is pd

 In general, we use eigenvalues to determine the definiteness of a
matrix (and quadratic form).

RS- Chapter 4 24

4.4 Upper and Lower Triangular Matrices

LT

021

012

000

 UT

100

600

521
































 A square (nxn) matrix C is:

-Upper Triangular (UT) iff Cij=0 for i>j
(if the diagonal elements are all equal to 1,
we have a upper-unit triangular (UUT) matrix)

-Lower Triangular (LT) iff Cij=0 for i<j
(if the diagonal elements are all equal to 1,
we have a lower-unit triangular (LUT) matrix)

-Diagonal (D) iff Cij=0 for i≠j

47

• Theorems:
The product of the two UT (UUT) matrices is UT (UUT).
The product of the two LT (LUT) matrices is LT (LUT).
The product of the two D matrices is D.

 An (nxn) matrix A can be factorized, with proper row and/or
column permutations, into two factors, an LT matrix L and an UT
matrix U:

48

4.4 UT & LT Matrices – LU Factorization


































33

2322

131211

333231

2221

11

00

0x0

00

u

uu

uuu

lll

ll

l

LUA

 Without permutations in A, the factorization may fail. We have
an n2 by n2 system. For example, given a11 = l11 u11, if a11=0, then at
least one of l11 & u11 has to be 0, which implies either L or U is
singular (impossible if A is non-singular).

 A proper permutation matrix, P, is enough for LU factorization.
It is called LU factorization with Partial Pivoting (or PA = LU).

RS- Chapter 4 25

4.4 UT & LT Matrices – Forward Substitution

49

• The LU decomposition requires 2n3/3 (plus lower order terms)
operations or “flops” –i.e., floating point operations (+,-,x,/).
When n is large, n3 dominates, we describe this situation with
“order n3”or O(n3).

• Q: Why are we interested in these matrices?
Suppose Ax=d, where A is LT (with non-zero diagonal terms).

Then, the solutions are recursive (forward substitution).

Example:
x1 = d1/a11

a21 x1 + a22 x2 = d2

a31 x1 +a32 x2 + a33 x3 = d3

Note: For an nxn matrix A, this process involves n2 flops.
49

• Similarly, suppose Ax=d, where A is UT (with non-zero diagonal
terms). Then, the solutions are recursive (backward substitution).

Example:
a11 x1 +a12 x2 + a13 x3 = d1

a22 x2 + a23 x3 = d2

x3 = d3/a31

Note: Again, for A(nxn), this process involves n2 flops.

4.4 UT & LT Matrices – Back Substitution

50

RS- Chapter 4 26

51

• Finding a solution to Ax=d
Given A (nxn). Suppose we can decompose A into A=LU, where L
is LUT and U is UUT (with non-zero diagonal).

Then Ax=d  LUx = d.

Suppose L is invertible Ux = L-1d = c (or d = Lc)
 solve by forward substitution for c.

Then, Ux = c (Gaussian elimination)  solve by backward
substitution for x.

• Theorem:
If A (nxn) can be decomposed A=LU, where L is LUT and U is
UUT (with non-zero diagonal), then Ax=d has a unique solution
for every d.

4.4 UT & LT Matrices – Linear Systems

4.4 UT & LT Matrices – LDU Decomposition

• We can write a “symmetric” decomposition. Since U has non-
zero diagonal terms, we can write U=DU*, where U* is UUT.
Example:




















































100

210

421

*;

500

030

002

;

500

630

842

UDU

• Theorems:
- If we can write A (nxn) as A=LDU, where L is LUT, D is
diagonal with non zero diagonal elements, and U is UUT, then L,
D, and U are unique.

- If we can write A (nxn) as A=LDU, and A is symmetric, then we
can write A=LDL’.

52

RS- Chapter 4 27

4.4 Cholesky Decomposition

• Theorem: Cholesky decomposition
A is a symmetric positive definite matrix (A symmetric, A=LDL’,
and all diagonal elements of D are positive), then A = HH’.

Proof:
Since A is symmetric, then A=LDL’.
The product of a LUT matrix and a D matrix is a LUT matrix.
Let D*=D1/2 and L be a LT matrix.
Then H=LD* is matrix is LT  A=HH’. ■

• H is called the Cholesky factor of A (‘square root’ of a pd matrix.)

• The Cholesky decomposition is unique. It is used in the
numerical solution of systems of equations, non-linear
optimization, Kalman filter algorithms, IRF of VARs, etc.

53

4.4 Cholesky decomposition: Algorithm

54

• Let’s partition matrices A=HH’ as:

/

222221212111

2111
2

11

22

2111

2221

11

2221

2111

0

0




































TT

T

T

TT

LLLLLl

Lll

L

Ll

LL

l

AA

Aa

• Algorithm
1. Determine l11 and L21: l11 = √a11 & L21 = (1/l11) A21

(if A is pd  a11>0)

2. Compute L22 from A22 − L21 L21
T = L22 L22

T

(if A is pd  A22 − L21 L21
T = A22 − A21A21

T/a11 is pd)

André-Louis Cholesky (1875–1918, France)

RS- Chapter 4 28

4.4 Cholesky decomposition: Algorithm

55

• Example:

55

4.4 Cholesky decomposition: Algorithm

• Example:

Note: Again, for A(nxn), the Cholesky decomposition involves n3/3
flops.

56

RS- Chapter 4 29

4.4 Cholesky decomposition: Application

57

• System of Equations
If A is a positive definite matrix, then we can solve Ax = d by
(1) Compute the Cholesky decomposition A=HH′.
(2) Solve Hy = d for y, (forward solution)
(3) With y known, solve H′x = y for x. (backward solution)
Q: How many flops? Step (1): n3/3 flops, Steps (2)+(3): 2n2 flops.

Note: A-1 is not computed (Gauss-Jordan methods needs 4n3 flops)

• Ordinary Least Squares (OLS)
Systems of the form Ax = d with A symmetric and pd are
common in economics. For example, the normal equations in OLS
problems are of this form (the unknown is b):

(y - Xb)′ X = 0  X′X b = X′ y
No need to compute (X′X)-1 (=A-1) to solve for b.

4.5 Inverse matrix (Again)

 Review

- AA-1 = I

- A-1A=I

- Necessary for matrix to be square to have unique inverse.

- If an inverse exists for a square matrix, it is unique

- (A')-1=(A-1)’

- If A is pd, then A-1 = H’-1H-1

- Solution to A x = d
A-1A x* = A-1 d

I x* =A-1 d  x* = A-1 d (solution depends on A-1)

- Linear independence a problem to get x*

- Determinant test! (coming soon)
58

RS- Chapter 4 30

4.5 Inverse of a Matrix: Calculation

















100

010

001

|

ihg

fed

cba

Process:
• Append the identity matrix to A.

• Subtract multiples of the other
rows from the first row to reduce
the diagonal element to 1.

• Transform I as you go.

• When the original A matrix
becomes I, the original identity
has become A-1.

• Theorem: Let A be an invertible (nxn) matrix. Suppose that a
sequence of elementary row-operations reduces A to the identity
matrix. Then, the same sequence of elementary row-operations
when applied to the identity matrix yields A-1.

















zyx

wvu

tsr

|

100

010

001

4.5 Determination of the Inverse
(Gauss-Jordan Elimination)

AX = I

I X = K

I X = X = A-1  K = A-1

1) Augmented
matrix

all A, X and I are (nxn)
square matrices

X = A-1

Gauss elimination Gauss-Jordan
elimination

further row
operations

[A I] [UT H] [I K]

2) Transform (using elementary row
operations) augmented matrix

Wilhelm Jordan (1842– 1899, Germany)

RS- Chapter 4 31

Find A-1 using the Gauss-Jordan method.

4.5 Gauss-Jordan Elimination: Example 1


















211

121

112

A





















 

















100211

010121

00
2

1

2

1

2

1
1

100211

010121

001112

|.1)2/1(1RIA

























 























10
2

1

2

3

2

1
0

01
2

1

2

1

2

3
0

00
2

1

2

1

2

1
1

100211

010121

00
2

1

2

1

2

1
1

.2)1(&)1(3121 RR

Process: Expand A|I. Start scaling and adding rows to get I|A-1.

























 



























10
2

1

2

3

2

1
0

0
3

2

3

1

3

1
10

00
2

1

2

1

2

1
1

10
2

1

2

3

2

1
0

01
2

1

2

1

2

3
0

00
2

1

2

1

2

1
1

.3)3/2(2 AR

























 

























 

1
3

1

3

1

3

4
00

0
3

2

3

1

3

1
10

00
2

1

2

1

2

1
1

10
2

1

2

3

2

1
0

0
3

2

3

1

3

1
10

00
2

1

2

1

2

1
1

.4)2/1(32R

























 



























4

3

4

1

4

1
100

0
3

2

3

1

3

1
10

00
2

1

2

1

2

1
1

1
3

1

3

1

3

4
00

0
3

2

3

1

3

1
10

00
2

1

2

1

2

1
1

.5)4/3(3R

4.5 Gauss-Jordan Elimination: Example 1

Gauss
elimination

RS- Chapter 4 32





























 

























 

4

3

4

1

4

1
100

4

1

4

3

4

1
010

8

3

8

1

8

5
0

2

1
1

4

3

4

1

4

1
100

0
3

2

3

1

3

1
10

00
2

1

2

1

2

1
1

.6)2/1(&)3/1(1323 RR





























 































4

3

4

1

4

1
100

4

1

4

3

4

1
010

8

2

8

2

8

6
001

4

3

4

1

4

1
100

4

1

4

3

4

1
010

8

3

8

1

8

5
0

2

1
1

.7)2/1(12R



























































 

4

3

4

1

4

1
4

1

4

3

4

1
4

1

4

1

4

3

4

3

4

1

4

1
100

4

1

4

3

4

1
010

8

2

8

2

8

6
001

|.8 11 AAI

4.5 Gauss-Jordan Elimination: Example 1

Gauss-
Jordan

elimination
















 


















 
















 
















 




































DDI

DDI

D

DDI

I

I

I

I

I

I

I

XXYX

XYXXXXYXXYXXXXRR

XYXXYXYY

XXYX

XXXYXXR

XXYXXYXXYXYY

XXXYXXRR

YYYX

XXXYXXR

YYYX

XYXX

XYXX

XYXXYXYY

YX

XX

)(0

0
.4

][where

)(0

0
.3

0

0
.2

0

0

0

0
.1

1

1111

11

1

11
][

11

11

11

2
1

1

2
11

12

1
1

Partitioned inverse (using the Gauss-Jordan method).

4.5 Gauss-Jordan Elimination: Example 2

RS- Chapter 4 33

• Q: How many flops to invert a matrix with the G-J method?
A: Avoid inverses! But, if you must... The process of zeroing out
one element of the left-hand matrix requires multiplying the line
to be subtracted by a constant (2n flops), and subtracting it (2n
flops). This must be done for (approximately) n2 matrix elements.
Thus, the number of flops is about equal to 4n3 by the G-J
method.

• Using a standard PC (100 Gigaflops, 109, per second), for a
30x30 matrix, the time required is less than a millisecond,
comparing favorably with 1021+ years for the method of
cofactors.

• More sophisticated (optimal) algorithms, taking advantage of
zeros –i.e., the sparseness of the matrix-, can improve to n3 flops.

4.5 Gauss-Jordan Elimination: Computations

4.5 Matrix inversion: Note

 It is not possible to divide one matrix by another. That is, we
can not write A/B. For two matrices A and B, the quotient can
be written as AB-1 or B-1A.

 In general, in matrix algebra AB-1  B-1A.

Thus, writing A/B does not clearly identify whether it represents
AB-1 or B-1A.

We’ll say B-1 post-multiplies A (for AB-1) and

B-1 pre-multiplies A (for B-1A)

 Matrix division is matrix inversion.

66

RS- Chapter 4 34

4.5 Matrix inversion: R

 To find the inverse of a matrix or solve a system of equations,
use "solve"

> A

[,1] [,2]

[1,] 18 7

[2,] 32 16

> solve(A)

[,1] [,2]

[1,] 0.25 -0.109375

[2,] -0.50 0.281250

 Solve system Ax = d
> d <- c(2, 1)

> x <- solve(A, d); x

[1] 0.390625 -0.718750 67

4.6 Trace of a Matrix

 The trace of an nxn matrix A is defined to be the sum of the
elements on the main diagonal of A:

trace(A) = tr(A) = Σi aii.

where aii is the entry on the ith row and ith column of A.

 Properties:

- tr(A + B) = tr(A) + tr(B)

- tr(cA) = c tr(A)

- tr(AB) = tr(BA)

- tr(ABC) = tr(CAB) (invariant under cyclic permutations.)

- tr(A) = tr(AT)

- d tr(A) = tr(dA) (differential of trace)

- tr(A) = rank(A) when A is idempotent –i.e., A= A2.

68

RS- Chapter 4 35

4.6 Application: Rank of the Residual Maker

 We define M, the residual maker, as:

M = In - X(X′X)-1 X′ = In - P

where X is an nxk matrix, with rank(X)=k

 Let’s calculate the trace of M:

tr(M) = tr(In) - tr(P) = n - k

- tr(IT) = n

- tr(P) = k

Recall tr(ABC) = tr(CAB)

 tr(P) = tr(X(X′X)-1 X′) = tr(X′X (X′X)-1) = tr(Ik) = k

 Since M is an idempotent matrix –i.e., M= M2-, then

rank(M) = tr(M) = n - k 69

4.7 Determinant of a Matrix

 The determinant is a number associated with any squared
matrix.

 If A is an nxn matrix, the determinant is |A| or det(A).

 Since the early days, a determinant was used to “determine” if a
system of linear equations has a unique solution.

 Cramer (1750) expanded the concept to sets of equations, but a
bit later, they were recognized as independent functions,
Vandermole (1772).

 Determinants are used to characterize invertible matrices. A
matrix is invertible (non-singular) if and only if |A|≠0.

 That is, if |A|≠0 → A is invertible or non-singular.

 Can be found using factorials, pivots, and cofactors!

 Lots of interpretations. 70

RS- Chapter 4 36

4.7 Determinant of a Matrix

 When n is small, determinants are used for inversion and to solve
systems of equations.

Example: Inverse of a 2x2 matrix:











dc

ba
A bcadAA )det(||
















ac

bd

bcad
A

11 This matrix is called the
adjugate of A (or adj(A)).

A-1 = adj(A)/|A|

cegbdiafhcdhbfgaei

ihg

fed

cba



ihg

fed

cba

ihg

fed

cba

ihg

fed

cba Sarrus’ Rule: Sum
from left to right.
Then, subtract from
right to left
Note: N! terms

 Q: How many flops? For A (3x3), we count 17 operations.

4.7 Determinant of a Matrix (3x3)

RS- Chapter 4 37

4.7 Determinants: Laplace formula

 The determinant of a matrix of arbitrary size can be defined
by the Leibniz formula or the Laplace formula.

 The Laplace formula (or expansion) expresses the determinant
|A| as a sum of n determinants of (n-1) × (n-1) sub-matrices
of A. There are n2 such expressions, one for each row and
column of A

 Define the i,j minor Mij (usually written as |Mij|) of A as the
determinant of the (n-1) × (n-1) matrix that results from
deleting the i-th row and the j-th column of A.

73
Pierre-Simon Laplace (1749–1827, France).

 Define the Ci,j the cofactor of A as:

74

||)1(,, ji
ji

ji MC 

• The cofactor matrix of A -denoted by C-, is defined as the nxn
matrix whose (i,j) entry is the (i,j) cofactor of A. The transpose
of C is called the adjugate or adjoint of A -adj(A).

• Theorem (Determinant as a Laplace expansion)

Suppose A = [aij] is an nxn matrix and i,j= {1, 2, ...,n}. Then the
determinant

njnjjjijij

ininiiii

CaCaCa

CaCaCaA




...

...||

22

2211

4.7 Determinants: Laplace formula

RS- Chapter 4 38

 Example:

75


















642

010

321

A

0)0(x4)3x2-x61)(1()0(x2

0))2x)1((x3)0(x)1(x2)6x1(x1

x3x2x1|| 131211




 CCCA

 |A|=0  The matrix is singular. (Check!)

 How many flops? For a A (3x3), we count 14 operations
(better!). For A (nxn), we calculate n subdeterminants, each of
which requires (n-1) subdeterminants, etc. Then, computations
of order n! (plus some n terms), or O(n!).

4.7 Determinants: Laplace formula

4.7 Determinants: Properties

 Interchange of rows and columns does not affect |A|.
(Corollary, |A| = |A’|.)

 To any row (column) of A we can add any multiple of any other
row (column) without changing |A|.

(Corollary, if we transform A into U or L , |A|=|U| = |L|,
which is equal to the product of the diagonal element of U or
L.)

 |I| = 1, where I is the identity matrix.

 |kA| = kn |A|, where k is a scalar.

 |A| = |A’|.

 |AB| = |A||B|.

 |A-1|=1/|A|.

 Recursive flops formula: flopsn= n * (flopsn-1 + 2) - 176

RS- Chapter 4 39

4.7 Determinants: R

 Simple command, det(A)

 > M = cbind(rbind(1,2), rbind(6,5))
[,1] [,2]

[1,] 1 6

[2,] 2 5

>det(M)

[1] -7

> det(M*2)

[1] -28

> Minv <-solve(M); M);Minv

[,1] [,2]

[1,] -0.7142857 0.8571429

[2,] 0.2857143 -0.1428571

> det(Minv)

[1] -0.1428571
77

4.7 Determinants: Computations

 By today’s standards, a 30×30 matrix is small. Yet it would be
impossible to calculate a 30×30 determinant by Laplace formula.
It would require over n! (30! ≈ 2.65 × 1032) multiplications.

 If a computer performs one quatrillion (1.0x1015) multiplications
per second (a Petaflops, the 2008 record), it would have to run for
over 8.4 billion years to compute a 30×30 determinant by Laplace’s
method.

 Using today’s fastest computer (2013 China Tianhe-2, 33
petaflops), it would take 254 million years.

 Not a very useful, computationally speaking, method. Avoid
factorials! 78

RS- Chapter 4 40

4.7 Determinants: Computations

 Faster way of evaluating the determinant: Bring the matrix to
UT (or LT) form by linear transformations. Then, the determinant
is equal to the product of the diagonal elements.

 For A (nxn), each linear transformation involves adding a multiple
of one row to another row, that is, n or fewer additions and n or
fewer multiplications. Since there are n rows, this is a procedure of
order n3 -or O(n3).

Example: For n = 30, we go from 30! = 2.65*1032 flops to 303 =
27,000 flops.

79

   



















































































































n

i
ini

n

i
ii

n

i
ii

nx
n

nxn

nnnn

n

n

x

nx
Cd

Cd

Cd

A

d

d

d

CCC

CCC

CCC

A

x

x

x

dA
A

x

n

1

1
2

1
1

1

2

1

21

22212

12111

11

1

*

*

*

*

11

adjoint
1

2

1












80

4.7 Determinants: Cramer’s Rule - Derivation

• Recall the solution to Ax=d, where A is an nxn matrix:
x* = A-1d

Using the cofactor method to get the inverse we get:

RS- Chapter 4 41

 

AAx

aad

aad

aad

A

A
aa

aa
d

aa

aa
d

aa

aa
dCd

MCCdCdCdCd

Cd

Cd

Cd

A
CdCdCd

CdCdCd

CdCdCd

A
x

x

x

*

i
ii

ij
ji

iji
i

ii

i
ii

i
ii

i
ii

111

33323

23222

13121

1

1
2322

1312
3

3332

1312
2

3332

2322
1

3

1
1

31212111

3

1
1

3

1
3

3

1
2

3

1
1

333232131

323222121

313212111

*
3

*
2

*
1

such that A Find.4)

)3

1 where)2

11
)1











































































































81

• Example: Let A be 3x3. Then,

4.7 Determinants: Cramer’s Rule - Derivation

82

A

A

aaa

aaa

aaa

aad

aad

aad

Ca

Cd
x

i
ii

i
ii

1

333231

232221

131211

33323

23222

13121

3

1
11

3

1
1

*
1 









4.7 Determinants: Cramer’s Rule - Derivation

A

A

aaa

aaa

aaa

ada

ada

ada

Ca

Cd
x

i
ii

i
ii

2

333231

232221

131211

33331

23221

13111

3

1
22

3

1
2

*
2 









RS- Chapter 4 42

83

A

A

aaa

aaa

aaa

daa

daa

daa

Ca

Cd
x

i
ii

i
ii

3

333231

232221

131211

33231

22221

11211

3

1
33

3

1
3

*
3 









4.7 Determinants: Cramer’s Rule - Derivation

Gabriel Cramer (1704-1752, Switzerland).





































































































AA

AA

AA

AA

Cd

Cd

Cd

Cd

A

x

x

x

x

n
n

i
ini

n

i
ii

n

i
ii

n

i
ii

n






3

2

1

1

1
3

1
2

1
1

*

*

*

*

1
3

2

1

84

4.7 Determinants: Cramer’s Rule - Derivation

• Following the pattern, we have the general Cramer’s rule:

RS- Chapter 4 43

4.7 Cramer’s Rule Application: Macro

Model

85

 gb

g

bA 




 1

10

01

111

tdeterminan The























































010

01

111

formMatrix

0

0

bTa

I

G

C

Y

g

b

86

     

   
)(1

00

1

11

)(1

1
1

10

0

11

)(1
100

01

11

00*
000

0

00*
000

0

00*
000

0

gb

IbTag

A

A
GIbTag

g

bTab

I

A

gb

bTagbI

A

A
CbTagbI

g

bTab

I

A

gb

bTaI

A

A
YbTaIbTa

I

A

G
G

C
C

Y
Y































• Applying Cramer’s rule for the 3x3 case:

4.7 Cramer’s Rule Application: Macro Model

RS- Chapter 4 44

Ch. 4 - Notation and Definitions: Summary

 A (Upper case letters) = matrix
 b (Lower case letters) = vector
 nxm = n rows, m columns
 rank(A) = number of linearly independent vectors of A
 trace(A) = tr(A) = sum of diagonal elements of A
 Null matrix = all elements equal to zero.
 Diagonal matrix = all off-diagonal elements are zero.
 I = identity matrix (diagonal elements: 1, off-diagonal: 0)
 |A| = det(A) = determinant of A
 A-1 = inverse of A
 A’=AT = Transpose of A
 |Mij|= Minor of A
 A=AT => Symmetric matrix
 AT A =A AT => Normal matrix
 AT =A-1 => Orthogonal matrix
 A =A2 => Idempotent matrix 87

