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Mathematics for Economists

Chapters 4-5
Linear Models and Matrix Algebra

| M

The Nine Chapters on the Mathematical Art

Johann Carl Friedrich Gauss (1777-1855)  (1000-200 BC)

Objectives of Math for Economists

To study economic problems with the formal tools of math.

To understand mathematical economics problems by stating the
unknown, the data and the restrictions/conditions.

To plan solutions to these problems by finding a connection
between the data and the unknown

To carry out your plans for solving mathematical economics
problems

To examine the solutions to mathematical economics problems
for general insights into current and future problems.

Remember: Math econ is like love — a simple idea but it can get
complicated.
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4. Linear Algebra

* Some eatly history:

* The beginnings of matrices and determinants goes back to the
second century BC although traces can be seen back to the fourth
century BC. But, the ideas did not make it to mainstream math
until the late 16" century

* The Babylonians around 300 BC studied problems which lead to
simultaneous linear equations.

e The Chinese, between 200 BC and 100 BC, came much closer to
matrices than the Babylonians. Indeed, the text Nine Chapters on the
Mathematical Art written during the Han Dynasty gives the first
known example of matrix methods.

¢ In Europe, 2x2 determinants were considered by Cardano at the
end of the 16™ century and larger ones by Leibniz and, in Japan, by
Seki about 100 years later.

4. What is a Matrix?

* A matrix is a set of elements, organized into rows and columns

rows

a b
c d

columns

* a and d are the diagonal elements.
* band ¢ are the off-diagonal elements.

* Matrices are like plain numbers in many ways:
they can be added, subtracted, and, in some
cases, multiplied and inverted (divided).

Arthur Cayley (1821 — 1895, England)




4. Matrix: Details

e Examples:
a a
A= " "2 b=I[b, b, b,]
a‘12 a'22

* Dimensions of a matrix: numbers of rows by numbers of
columns. The Matrix A is a 2x2 matrix, b is a 1x3 matrix.

* A matrix with only 1 column or only 1 row is called a vector.
* If a matrix has an equal numbers of rows and columns, it is

called a sguare matrix. Matrix A, above, is a square matrix.

* Usual Notation: Upper case letters => matrices
Lower case = vectors

4. Matrix: Details

* In econometrics, we have data, say T (or IN) observations, on a
dependent variable, Y, and on £ explanatory variables, X.

* Under the usual notation, vectors will be column vectors: y and
x, are Tx1 vectors:

Y1 Xj1
y=|: & Xi:l : ] J=1.,k
yr Xjr
X117 Xk
X is a TxA matrix: X=|: ’ :
Xr1 " Xk

Its columns are the £ Tx1 vectors X;. It is common to treat x; as
vector of ones, L.

RS- Chapter 4
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4.1 Special Matrices: Identity and Null

o Identity Matrix: A square matrix with 1’s along
the diagonal and 0% everywhere else. Similar to
scalar “1.”

0’s. Similar to scalar “0.”

o O O O +— O

1
0
0
o Null matrix: A matrix in which all elements are 0
0
0

* Both are diagonal matrices = off-diagonal L -
elements are zero.

* Both are examples of symmetric and idempotent matrices. As we will
see later:

- Symmetric: A = AT
- Idempotent: A =A?=A%= ...

4.1 Matrix: Elementary Row Operations

* Elementary row operations:
- Switching: Swap the positions of two rows
- Multiplication: Multiply a row by a non-zero scalar
- Addition: Add to one row a scalar multiple of another.

* An elementary matrix is a matrix which differs from the identity
matrix by one single elementary row operation.

* If the matrix subject to elementary row operations is associated
to a system of linear equations, then these operations do not
change the solution set. Row operations can make the problem
easier.

* Elementary row operations are used in Gaussian elimination to
reduce a matrix to row echelon form.
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4.1 Matrix multiplication: Details

* Multiplication of matrices requires a conformability condition

* The conformability condition for multiplication is that the

column dimensions of the lead matrix A must be equal to the
row dimension of the lag matrix B.

e If Aisan (wxn) and B an (7xp) matrix (A has the same number

of columns as B has rows), then we define the product of AB.
AB is (7xp) matrix with its ij-th element is Z 3Dy

e What are the dimensions of the vector, matrix, and result?

b, b, b
aB = [allalz ] {blzll N 13:‘ =C= [Cn Cp, ClS]

=[a b, +ab, ab,+ash, ab;+ab,]

Dimensions: (1x2), B(2x3) = c¢(1x3)

22 b23

4.1 Transpose Matrix

* The transpose of a matrix A is another matrix AT (also written

A') created by any one of the following equivalent actions:
- write the rows (columns) of A as the columns (rows) of AT

- reflect A by its main diagonal to obtain AT

e Formally, the (z' 7)) element of AT is the (/) element of A:

AT]Z/ |

° IfAlsamX nmatrix:>ATisaﬂ>< 77 matrix.
° (AV'_

* Conformability changes unless the matrix is square.

31
38 -9 .
Example: A= =A= 8 0
10 4
-9 4
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4.1 Transpose Matrix: Example — X’

* In econometrics, an important matrix is X’X. Recall X:

X11
X=|:
XT1
Then,
X11
X’ = :
Xr1

xkl]
Xk1

le]
XK1

a (Txk) matrix

a (kxT) matrix

4.1 Basic Operations

e Addition, Subtraction, Multiplication

a bl e f
+

c d]|g h

a bl [e f

c d|f|g h

abef__

c d|g h|

a+e
c+g
1 [a-e
] -9
ae+bg
ce+dg

E b| [ka kb
c d| |kc kd

b+f|
d+h]|
b—f]
d—h]

af +bh
cf +dh

|

Just add elements

Just subtract elements

Multiply each row by
each column and add

Multiply each
element by the scalar
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4.1 Basic Matrix Operations: Examples

e Matrix addition 2 1 + 3 1}:[5 2
7 9] |0 2
AsatB1a=Coys

e Matrix subtraction > 11 1 0 11
7 9] |2 3}:[

* Matrix multiplication

e A,,xB,,=C
e Scalar multiplication 2xaTmaxg 202

8|6 1

|

|
5 otle sl &

7 11

5 6

1[2 4] [1/4 1)2]
{ H3/4 /8

4.1 Basic Matrix Operations: X'X

* A special matrix in econometrics, X'X (a Ax£ matrix):

X11 " X X11
* Recall X (Txk): X=| : &X°=1|:
Xir  t Xkr XK1
2 2
zinzlxil 2inzlxi].XiZ 2inzlxilxiK Xil XilXiZ
2 2
x-X: 2;']:leiZXiil Zin:ZlXiZ Z;']:leiZXiK :zin:l XiZXil Xi2
2
Z:inzlxiKXil 2in:lXiKXiZ Z:in:IXiK XiKXil XiKXiZ
Xil
X'2
:Zinzl I [Xil Xig oo XiK]
Xik
=ZLXX;

xlT]
XkT
XilxiK

XiZXiK
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4.1 Basic Matrix Operations: {'X

e Recall i is a column vector of ones (in this case, a Tx1 vector):

i

e Given X (Txk), then ? X is a 1x£ vector:
X110 Xk

PX=[1 .. 1][E 5]=[Zf=1x1t o Yie1 Xiet)

Xir 0 Xkr

Note: If x, is a vector of ones (representing a constant in the
linear classical model), then:

Px, =Y xe =21 ,1=T (“dot product”)

4.1 Basic Matrix Operations: R

* Many ways to create a vector (c, 2:7, seq, rep, etc) or a matrix (c,
cbind, rbind). Usually, matrices will be data —i.e., read as inpu:

>v<-c(l,3,5)
>v
[1]135
> A <- matrix(c(1, 2, 3,7, 8, 9), ncol = 3)
> A
L1 121 [3]
) 1 3 8
2] 2 7 9
> B <- matrix(c(1, 3, 1, 1, 2, 0), nrow = 3)
>B
L1162
) 1 1
2] 3 2
3] 1 0
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4.1 Basic Matrix Operations: R

* Matrix addition/substraction: +/- --element by element

e Matrix multiplication: %*%
> C <- A%*%B #A is 2x3; B is 3x2
>C
L1121
1] 18 7
2] 32 16

e Scalar multiplication: * --elementwise multiplication of two
matrices/vectors

> 2*C
L1 2l

[1] 36 14

2] 64 32

4.1 Basic Matrix Operations: R

* Matrix transpose: t

> t(B) #B is 3x2; t(B) is 2x3
(11 62] [3]

) 1 3 1

2] 1 2 0

o X'X

> t(B)%*%B # command crossprod(B) is more efficient
(11 (2]

1) 11 7

2] 7 5

¢ dot product
>i < c(L,1,1); t)%* %y #v<-c(l,3,5)

1]
[1] 9
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4.1 Laws of Matrix Addition & Multiplication

e Commutative law of Matrix Addition: A+ B=B + A
A+B=|:a11 aﬂ}_i_{bn blz}:{all-i_bll b12+a12:|
ay Ay b21 b22 Ay T3y b22 +a,
B+A{bn blz}{aﬂ au}{bmau b, +a12}
b21 b22 b21 b22 b21 +a, b22 +3,,

e Matrix Multiplication is distributive across Additions:

AB+C)=AB +AC (assuming comformability applies).

4.1 Matrix Multiplication

e Matrix multiplication is generally not commutative. That is,

AB # BA cven if BA is conformable
(because different dot product of rows or col. of A&B)

o il 7
-t A [ =

(0)+4(6) 3(-1)
_{o<1>+< @) 0(2)+ <—1>4H—s —4}
6L)+7(3) 6(2)+(7¢ | |27 40

10
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4.1 Matrix multiplication

* Exceptions to non-commutative law:
AB=BA iff
B = a scalar,
B = identity matrix I, or
B = the inverse of A -i.e., A’

e Theorem: It is not true that AB = AC => B=C
Proof:

1 2 1 1 -1 1 2 1
A=]1 0 -1;B=0 1 O0O[;C=|-1 -1
1 -2 -3 1 0 2 3

Note: If AB = AC for all matrices A, then B = C.

4.1 Inverse of a Matrix

 Identity matrix: Al = A

100
I,=|0 1 0
00 1

Notation: I; is a /%/ identity matrix.
* Given A (wxn), the matrix B (nxwm) is a right-inverse for A ift
AB=1,

® Given A (mxn), the matrix C (mxn) is a left-inverse for A iff
CA=1,

11
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4.1 Inverse of a Matrix

e Theorem: If A (mxn), has both a right-inverse B and a left-inverse C,
thenC = B.

Proof:

We have  AB=I_ and CA=I.

Thus,
CAB)=CI_ =C and C(AB)=(CA)B=1, B =B
= C(nxm)=B(nxn)

Note:

- This matrix is unique. (Suppose there is another left-inverse D,
then D=B by the theorem, so D=C.).

- If A has both a right and a left inverse, it is a square matrix. It
is usually called znvertible. We say “the matrix A is non-singular.”

4.1 Inverse of a Matrix

e Inversion is tricky:
(ABC)! = CB-1A"

e Theorem: If A (mx#n) and B (#xp) have inverses, then AB is
invertible and (AB)! = B-1A"!

Proof:
We have  AA'=I_ and A'A=I
BB'=I, and B'B=I_
Thus,
B'A'(AB) = B' (A'A)B=B'[,B=B'B=1,
(AB)B'A'=A (BB)A'1=AL Al=AA'=1
= AB is invertible and (AB)! = B'A’!

m

* More on this topic later.

12
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4.1 Transpose and Inverse Matrix

c(A+B)=A+B

o If A'= A, then A is called a symmetric matrix.

e Theorems:
- Given two comformable matrices A and B, then (AB)' = B'A’
- If A is invertible, then (A1) = (A")! (and A' is also invertible).

4.1 Partitioned Matrix

* A partitioned matrix is a matrix which has been broken into
sections called blocks ot submatrices by horizontal and/or vertical
lines extending along entire rows or columns. For example, the
3x/ matrix can be partitioned as:

ay ap| A Ay

Ay Apl A Ay | |:A11(2X2) A12(2X(m—2))}
A (IX2) Ay (IX(m—-2))

A apl| A ag,

* Augmented matrices are also partitioned matrices. They have
been partitioned vertically into two blocks.

e Partitioned matrices are used to simplify the computation of
inverses.

13
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4.1 Partitioned Matrix

e If two matrices, A and B, are partitioned the same way, addition
can be done by blocks. Similarly, if both matrices are comformable
partitioned, then multiplication can be done by blocks.

A block diagonal matrix is a partitioned square matrix, with main
diagonal blocks square matrices and the off-diagonal blocks are

null matrices.

Nice Property: The inverse of a block diagonal matrix is just the

inverse of each block.

A0 A D AT 0 A O
0 A A O L] AT A0
A A A A A A A A
0 0 A A 0 0 A AT

4.1 Partitioned Matrix: Partitioned OLS Solution

e In the Classical Linear Model, we have the OLS solution:
XX, XX, X,

b:(xlx)flxly :>|:blj|:|: 1' 1 l' 2j| |: 1ij|

b2 X2 Xl X2 X2 XZ y

* Use of the partitioned inverse result produces a fundamental
result, the Frisch-Waugh (1933) Theorem: To calculate b, (or b,)
we do not need to invert the whole matrix. For this result, we need
the southeast element in the inverse of (X'X):

] ] '1 -1
[]‘1(2,1)\ Xllxl X1IX2 _— Hea

* With the partitioned inverse, we get:
b, = []’1(2,1) X'y + []’1(2,2) X,y

14
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4.1 Partitioned Matrix: Partitioned OLS Solution

e From partitioned inverse: b, = [,y X)'y + [ "0 X,y
* As we will derive later:

XX, XX
1.Matrix X'X = [ 1o 2}

X2|Xl X2')(2

(X1 X))+ (X0 X)X XDXo Xy (Xy X)) ™ (X" %)™ %' XD
—DX,' Xy (Xy' Xy) ™ D

where D =[X," X, =X, Xy (Xq' X)Xy X1 =X (1= Xq Xy X0) ™ Xq) X1

=>D=[X,' M X,]™

2. Inverse{

¢ The algebraic result is: [T = DXX X X))
[]_1(2,2) = D= [X,MX,]"
= by = [Toy Xi'y + [T 0p X0y = KM XX, My

4.1 Properties of Symmetric Matrices

e Definition:

If A'= A, then A is called a symmetric matrix.

e Theorems:
- If A and B are #xn symmetric matrices, then (AB)' = BA
- If A and B are #x# symmetric matrices, then (A+B)' = B+A

- If Cis any zxz matrix, then B = C'C is symmetric.

e Useful symmetric matrices:

V=XX
P = XX’X)'X’ P: Projection matrix
M=1I-P=1-XXX) X M: Residual maker

15
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4.1 Application 1: Linear System

e There is a functional form relating a dependent variable, y, and £
explanatory variables, X. The functional form is linear, but it
depends on £ unknown parameters, . The relation between y and
X is not exact. There is an error, €. We have T observations of y
and X.

e Then, the data is generated according to:

y; = ijl,.k X B + & i=1,2, ..., T
Or using matrix notation:
y=XB+e

where y & € are (Tx1); X is (Ixk); and B is (kx1).
e We will call this relation data generating process (DGP).

* The goal of econometrics is to estimate the unknown vector f.

4.1 Application 2: System of Equations

e Assume an economic model as system of linear equations with:
a; parameters, where 7 = 1,.., m rows, j = 1,.., n columns
x; endogenous variables (1),
d, exogenous variables and constants (7).

ap X, tapx,t .. ta,x, =d

ay Xt apx,+ ..+ a,x, =d,

an Xy + Ay Xp +oF Dy Xiz = dlﬂ

e We can write this system using linear algebra notation: A x = d

[an a1n”x1 [d1
Am1 / Amnl 1 Xy dm

X = column vector

g

= column vector
A = (mxn) matrix

e (): What is the nature of the set of solutions to this system?

16
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4.1 Application 2: System of Equations

e System of linear equations: Ax=d

where
A = (mxn) matrix of parameters
x = column vector of endogenous variables (nx1)
d = column vector of exogenous variables and constants (7x1)

¢ Solve for x*

* Questions:

- For what combinations of A and d there will zero, one, many or
an infinite number of solutions?

- How do we compute (characterize) those sets of solutions?

4.1 Solution of a General Equation System

e Theorem: Given A (7x#). If A has a right-inverse, then the
equation Ax = d has at least one solution for every d (7x1).

Proof:

Pick an arbitrary d. Let H be a right-inverse (so AH=I ).
Define x*=Hd.

Thus,

Ax* =AHd=1_d= d =>x*isasolution. m

17
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4.1 Solution of a General Equation System

e Theorem: Given A (wx7). If A has a left-inverse, then the
equation Ax=d has at most one solution for every d (7x1). That
is, if Ax=dhas a solution x* for a particular d, then x* is unique.

Proof:

Suppose x* is a solution and z* is another solution. Thus, Ax*=d
and Az*=d. Let G be a left-inverse for A (so GA=L,).

Ax*=d = GA x*= Gd
= [ x*=x*=Gd

Az*=d = GA z¥ = Gd
=>1z*=2*=Gd
Thus

b

x*=z*=Gd m

4.1 Solution of a General Equation System

e Problem with the previous proofr? We’re assuming the left-
inverse exists (and there’s always a solution).

e Assume the 2x2 model o Why?
2x+y=12 4x + 2y =24
4x + 2y =24 202x +y) = 2(12)

° one equation with two
Find x*, y*: unknowns
y=12-2x 2x +y=12

4x + 2(12 - 2x) = 24
4x +24 —4x = 24

0 = 0 ? indeterminante! Conclusion: Not all simultaneous
equation models have solutions

(not all matrices have inverses).

18
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4.1 Solution of a General Equation System

e Theorem: Given A (#x#) invertible. Then, the equation Ax = d
has one and only one solution for every d (nx1).

Proof:
Trivial from previous two theorems.

e Given an invertible matrix, A, use the “solve” command:
> A
L1102
(1] 18 7
2] 32 16
>d<-c21)
> x <-solve(A, d)
> X
[1] 0.390625 -0.718750

4.1 Linear dependence and Rank: Example

* A set of vectors is /nearly dependent if any one of them can be
expressed as a linear combination of the remaining vectors;
otherwise, it is linearly independent.

* Formal definition: Linear independence (LI)
The set {#,,..,u,} is called a lnearly independent set of vectors iff

eyt ou, =06 = = ==, =0.

* Notes:

- Dependence prevents solving a system of equations. More
unknowns than independent equations.

- The number of linearly independent rows or columns in a matrix
is the rank of a matrix (rank(A)).

19
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4.1 Linear dependence and Rank: Example

e Examples: Vi:[5 12]
v, =[10 24]

Az 5 10 _ V'i
12 24| |v,

2vi —vb =0 =rank(A)=1

el

3v, —2v,

=[6 21]-[2 16]

=[4 5]=v,

3v; —2v, —v3 =0 =rank(A) =2

4.2 Application 1: One Commodity Market
Model (2x2 matrix)

¢ Economic Model

DQu=a—IiP (b >0) pr_a+¢C

2) Q.= c+dP (cd>0) b+d

3) Q= Q, . ad-=bc
« Find P* and Q* Q = b+d
Scalar Algebra form

(Endogenous Vars ::  Constants)

HIQ+ P = 4

51Q-dP = =«

20
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4.2 Application 1: One Commodity Market
Model (2x2 matrix)

Matrix algebra

F MR
1 —-d|lP -C
Ax =d
SRR
P” 1 -d -C
x = Ad

4.2 Application 2: Finite Markov Chains

* Markov processes are used to measure movements over time.

Employeesat time 0 are distributed over twoplants A & B
x, =[A, B,]=[100 100]
The employeesstay and move between each plants w/ a known probability

M :{PAA PAB} _ {7 .3}
Pea  Pas 4 6
At theend of one year,how many employeeswill be at each plant?

[Ai Bl]:XéJM:[AO Bo]|:|;AA PAB:|:[AOPAA+AOPBA BOPAB+BOPBB]

BA PBB
73
=[100 100] 46 =[7*100+.4*100,  .3*100+.6*100]

=[110 90]

21
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4.2 Application 2: Finite Markov Chains

At the end of two years, how many employees will be at each plant?

[a BJ]=xiM =[A, BO]{PAA "ﬂ:[no o0]

Pea Pes
Paa Pag|[Pan P
[Az Bz]:X{)Mzz[Ao Bo]{ A AB}{ A AB}
Pea Pss||Pea Pes

7 3
=110 90]{4 6}:[.7*110+.4*90, 3*110 +.6*90]

=113 87]
M

After k years : [Ak Bk]: xpM K

4.3 Definite Matrices - Forms

* A form is a polynomial expression in which each component
term has a uniform degree. A quadratic form has a uniform second
degree.

Examples:
9x + 3y + 2% -first degree form.
622 + 2xy + 297 -second degree (quadratic) form.
X%z + 2922 + 2 -third degtee (cubic) form.

* A quadratic form can be written as: X’A x, where A'is a
symmetric matrix.

22



RS- Chapter 4

4.3 Definite Matrices - Forms

* For one variable, a quadratic form is the familiar:  y = a x®

If @>0, then 4 5% is always non-negative, and equals 0 only when
x=0. We call a form like this positive definite.

If a<0, then a 5 is always non-positive, and equals 0 only when
x=0. We call a form like this negative definite.

There are two intermediate cases, where the form can be equal to
0 for some non-zero values of x: negative/ positive semidefinite.

e For a general quadratic form, y = x’A x, we say the form is
Positive definite if y is invariably positive (y >0)
Positive semi-definite if y is invariably non-negative (y = 0)
Negative semi-definite if y is invariably non-positive (y < 0)
Negative definite if y is invariably negative (y < 0)
Indefinite it y changes signs.

4.3 Definite Matrices - Definition

* A quadratic form is said to be indefinite if y changes signs.

o A symmetric (#Xn) Ais called positive definite (pd), positve semidefinite
(psd), negative semidefinite (nsd) and negative definite (nd) according to the
corresponding sign of the quadratic form, j.

For example, if y = x’A x, is positive, for any non-zero vector x of
#n real numbers; we say A is positive definite.

Example: Let A = X'X.
Then, z'Az = 2'X'X z = v'v >0. = X'X is pd

¢ In general, we use eigenvalues to determine the definiteness of a

. . 46
matrix (and quadratic form).

23
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4.4 Upper and Lower Triangular Matrices

* A square (7x#7) matrix C is: - -
-Upper Triangular (UT) iff C;=0 for i>]

(if the diagonal elements are all equal to 1,

we have a upper-unit triangular (UUT) matrix)

uT

-Lower Triangular (LT) iff C;=0 for i<j
(if the diagonal elements are all equal to 1,
we have a lower-unit triangular (LUT) matrix)

LT

N P O O O N

T
P N O O O -

-Diagonal (D) iff C;=0 for i7j

* Theorems:

The product of the two UT (UUT) matrices is UT (UUT).
The product of the two LT (LUT) matrices is LT (LUT).
The product of the two D matrices is D.

4.4 UT & LT Matrices — LU Factorization

e An (7xn) matrix A can be factorized, with proper row and/or
column permutations, into two factors, an LT matrix L and an UT
matrix U-

;b 0 0 U U;p  Ugg

I3y 13 g3 0 0 \ugm

* Without permutations in A, the factorization may fail. We have
an 7 by #° system. For example, given a,, = /,, u,,, if a,,=0, then at
least one of /,, & #,, has to be 0, which implies either L or Uis
singular (impossible if A is non-singular).

* A proper permutation matrix, P, is enough for LU factorization.
Itis called LU factorization with Partial Pivoting (or PA =LU).

24



RS- Chapter 4

4.4 UT & LT Matrices — Forward Substitution

* The LU decomposition requires 2/2°/3 (plus lower order terms)
operations or “flops” —i.e., floating point operations (+,-,x,/).
When 7 is large, 7’ dominates, we desctibe this situation with
“order #7’or O(1).

* QQ: Why are we interested in these matrices?
Suppose Ax=d, where A is LT (with non-zero diagonal terms).
Then, the solutions are recursive (forward substitution).

Example:

x) = dy/ay,

ay Xyt ayx, = d

az Xy Faz X, T oazxy = d;

Note: For an 7x# matrix A, this process involves #? flops.

4.4 UT & LT Matrices — Back Substitution

* Similarly, suppose Ax=d, where A is UT (with non-zero diagonal
terms). Then, the solutions are recursive (backward substitution).

Example:

a; Xy tax, +a;;x5=d,
ay X, tayxy=d,

X3 = dy/ay,

Note: Again, for A(#xn), this process involves 7> flops.

25
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4.4 UT & LT Matrices — Linear Systems

* Finding a solution to Ax=d
Given A (nx#). Suppose we can decompose A into A=LU, where L.
is LUT and U is UUT (with non-zero diagonal).

Then Ax=d=LUx=4d

Suppose L is invertible= Ux = Lld = ¢ (or d= Lo
=> solve by forward substitution for c.

Then, Ux = ¢ (Gaussian elimination) = solve by backward
substitution for x.

* Theorem:
If A (x#) can be decomposed A=LU, where L is LUT and U is
UUT (with non-zero diagonal), then Ax=d has a unique solution
for every d.

4.4 UT & LT Matrices — LDU Decomposition

* We can write a “symmetric” decomposition. Since U has non-
zero diagonal terms, we can write U=DU*, where U* is UUT.
Example:

2 48 2 00 1 2 4
U=|0 3 6, D=0 3 0 ==U*=0 1 2
0 05 0 05 0 01

* Theorems:

- If we can write A (#x#) as A=LDU, where L is LUT, D is
diagonal with non zero diagonal elements, and U is UUT, then L,
D, and U are unique.

- If we can write A (#x#) as A=LDU, and A is symmetric, then we
can write A=LDL.
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4.4 Cholesky Decomposition

* Theorem: Cholesky decomposition
A is a symmetric positive definite matrix (A symmetric, A=LDI?,
and all diagonal elements of D are positive), then A = HH’.
Proof:
Since A is symmetric, then A=LDL’.
The product of a LUT matrix and a D matrix is a LUT matrix.
Let D*=D'"/?and L be a LT matrix.
Then H=LD* is matrix is LT = A=HH’. =

* H is called the Cholesky factor of A (‘square root’ of a pd matrix.)
* The Cholesky decomposition is unique. It is used in the

numerical solution of systems of equations, non-linear
optimization, Kalman filter algorithms, IRF of VARs, etc.

4.4 Cholesky decomposition: Algorithm

* Let’s partition matrices A=HH? as:

|:all A;1:| — |: Ill 0 :| |:Ill L21:| — |: I121 Ill L-gl :|
A21 A22 L21 I‘22 0 L;Z Ill L21 L21 L;l + L22 L-;_Z

/
* Algorithm
1. Determine /;; and L,;: Ly = \/ﬂ“ & L, =1/h) Ay
(if Ais pd = a;,>0)

2. Compute L, from A,, — L), I,," =L, [,,"
Gf Ads pd = Ay = Lo Ly)" = Ayy = Ay Ay /4y s pd)

André-Louis Cholesky (1875-1918, France)
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4.4 Cholesky decomposition: Algorithm
* Example:

25 15 —5 lll 0 0 [ l]l 121 lg]
15 18 0 = l-p_l IQQ 0 0 IQQ 132
-5 0 11 I3y lao Iag 0 0 I3

e first column of L

25 15 —5 5 0 0 7 5 3 -1
15 18 0| = 3 las O 0 loo 30
—= 0 11 —1 lgg 13'} 0 0 ng

e second column of L

8 0
0 11

oot

4.4 Cholesky decomposition: Algorithm

* Example:

e third columnof L: 10—-1 = l§3 i.e, l3a =3

conclusion:

25 15 =5 5 0 0 5 3 —
15 18 0| = 3 3 0 0 3
-5 0 11 o (R [ 0 0

Note: Again, for A(#x7), the Cholesky decomposition involves 7#°/3
flops.
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4.4 Cholesky decomposition: Application

* System of Equations

If A is a positive definite matrix, then we can solve Ax = dby
(1) Compute the Cholesky decomposition A=HH'".

(2) Solve Hy = dfory, (forward solution)

(3) With y known, solve H'x =y for x. (backward solution)
Q: How many flops? Step (1): #*/3 flops, Steps (2)+(3): 22 flops.

Note: Al is not computed (Gauss-Jordan methods needs 47° flops)

* Ordinary Least Squares (OLS)
Systems of the form Ax = dwith A symmetric and pd are
common in economics. For example, the normal equations in OLS
problems are of this form (the unknown is b):

(y-Xb)X =0 =>XXb=X'y
No need to compute (X'X)! (=A) to solve for b.

4.5 Inverse matrix (Again)

* Review
-AAT =1
- AA=I
- Necessary for matrix to be square to have unique inverse.
- If an inverse exists for a square matrix, it is unique
-(A)=@Ay
-If Ais pd, then A'l = H'H!
- Solution to Ax = d
AAx*=Ald
Ix*=A1ld = x*=A!d (solution depends on A1)
- Linear independence a problem to get x*

- Determinant test! (coming soon)
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4.5 Inverse of a Matrix: Calculation

* Theorem: Let A be an invertible (#x7) matrix. Suppose that a
sequence of elementary row-operations reduces A to the identity
matrix. Then, the same sequence of elementary row-operations
when applied to the identity matrix yields Al

Process:
a b c1 0 0 * Append the identity matrix to A.
d e f|0 1 0 * Subtract multiples of the other
g h i 0 01 rows from the first row to reduce
the diagonal element to 1.
* Transform I as you go.

1 0 0r s t
0 1 Oju v w * When the original A matrix
0 0 1x vy z becomes I, the original identity

has become AL

4.5 Determination of the Inverse
(Gauss-Jordan Elimination)

all A, X and I are (#x»)
square matrices

AX =1 X=A'

1) Augmented  2) Transform (using elementary row
matrix operations) augmented matrix
[AEI] — [UTEH] — I K] further row

operations
Gauss-Jordan

elimination

Gauss elimination

IX=K
IX=X=ZA!l=K=A'!

Wilhelm Jordan (1842— 1899, Germany) .
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4.5 Gauss-Jordan Elimination: Example 1
Find A using the Gauss-Jordan method.
2 11
A=11 2 1
11 2

Process: Expand A|I. Start scaling and adding rows to get I|A™.

11 1
1= = >0
11100 7 3 32
1. All=|1 2 1 0 1 0|—2% 11 2 1 0
112001 11 20
11 1 1 L1
1= = =00 2 2 2
2 2 2 31 1
2. 121010%055—510
11 2 001
ol 3 1o
2 2 2

4.5 Gauss-Jordan Elimination: Example 1

1111 T
2 2 2 2 2 2
3.0§1_£10M_)A=011_1g0
2 2 2 3 3 3
0ol 2 1o, 022 1o
L 2 2 2 2 2 2
P11 P11y
2 2 2 2 2 2
4 0 1 112 0| —RelV2 1o 1 11 2 0
3 3 3 3 3 3
0 131 01 0 0 411 1
L 2 2 2 3 3 3
SRR T RN
5 0 1 % _% g, 0| —RG4 sip 1 % _% %, 0 Gauss
4 1 1 1 1 3 elimination
00 - —=- -—>1 001 — -~ —
3 3 3 4 4 4
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4.5 Gauss-Jordan Elimination: Example 1

1 21y 1 Lo 52 1 =3
2 2 2 2 8 8 8
6 0 1 E _1 g 0 Rys (-1/3) &Ry3 (-1/2) 01 0 ;1 § ;1
3 3 3 4 4 4
001 -+ .13 001+ 13
L 4 4 4 4 4 4
_110§1;3 100§g;2
? —812—81 —812—81 Gauss-
7.0 10 — > ——|RG¥A 5001 0 - = =
4 4 4 4 4 4| Jordan
001 2t 3 001 * 1 3| climination
L 4 4 4 4 4 4
100§g;2 3 11
8 8 8 4 4 4
8 I1lat=lo 10 2t 3 1 e 2t 3 -1
4 4 4 4 4 4
001 + -1 3 -1-13
4 4 4 4 4 4

4.5 Gauss-Jordan Elimination: Example 2

Partitioned inverse (using the Gauss-Jordan method).
Zxx Zxy | O sim | Z0Exy Zxx 0
Ty Zyy 0 Zyx 2y U

-1 |
2 Ro—ZyxRi {l LyxZxy Zyx 0}
' 1 |
0 Zyy —ZyxZxxZxy —ZyxZxx |

-1 -1
3. Ewv—ZnEEx 'Ry I z“XXZXY 2XX 0
0 I D(ZyIZx) D

where D =[Zyy —ZyyZ3Zxy ] ™

-1 -1 -1 -1
4. Ri-ZxExvRo s I 0 Tyx +ZxxExy DZyxZxx  ZxxZxyD
0 | —D(ZyyZxx D
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4.5 Gauss-Jordan Elimination: Computations

* Q: How many flops to invert a matrix with the G-] method?

A: Avoid inverses! But, if you must... The process of zeroing out
one element of the left-hand matrix requires multiplying the line
to be subtracted by a constant (27 flops), and subtracting it (2»
flops). This must be done for (approximately) 7#° matrix elements.
Thus, the number of flops is about equal to 4#° by the G-J
method.

* Using a standard PC (100 Gigaflops, 10, per second), for a
30x30 matrix, the time required is less than a millisecond,
comparing favorably with 102!+ years for the method of
cofactors.

* More sophisticated (optimal) algorithms, taking advantage of
zeros —i.e., the sparseness of the matrix-, can improve to #° flops.

4.5 Matrix inversion: Note

e It is not possible to divide one matrix by another. That is, we
can not write A/B. For two matrices A and B, the quotient can
be written as AB™! or B-'A.

 In general, in matrix algebra AB! # B-'A.

Thus, writing A/B does not cleatly identify whether it represents
AB! or B1A.

We’ll say B! post-multiplies A (for AB!) and
B! pre-multiplies A (for B-'A)

e Matrix division is matrix inversion.
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4.5 Matrix inversion: R

 To find the inverse of a matrix or solve a system of equations,
use "solve"

>A
L1 2]

1] 18 7

2] 32 16

> solve(A)
L 12

[1,] 0.25-0.109375

[2,] -0.50 0.281250

e Solve system Ax = d
>d <2, 1)
> x <- solve(A, d); x

[1] 0.390625 -0.718750

4.6 Trace of a Matrix

e The #race of an nxn matrix A is defined to be the sum of the
elements on the main diagonal of A:

trace(A) = m{A) = X, a,
where a, is the entry on the /th row and 7th column of A.

e Properties:
- A+ B) = t1{A) + n(B)
- 11{cA) = ¢ tn(A)
- AB) = 1{BA)
- t1{ABC) = t1(CAB)  (invariant under cyclic permutations.)
- tr(A) = m(A")
-d mA) = 1(dA) (differential of trace)

- t1(A) = rank(A) when A is idempotent —i.e., A= A%
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4.6 Application: Rank of the Residual Maker

o We define M, the residual maker, as:
M=1I-XXX'X=1_P

where Xis an 7xA matrix, with rank(X)=4

e Let’s calculate the trace of M:
M) =) - tr(P) = n - k
-trLp) =n
-tr(P) =k
Recall #r(ABC) = #r(CAB)
= 1(P) = i X(X'X)' X)) = XX (XX)'")=tr(I)) = k

¢ Since M is an idempotent matrix —i.e., M= M?-, then
rank(M) = trM) = n - k

4.7 Determinant of a Matrix

e The determinant is a number associated with any squared
matrix.

e If Ais an #xn matrix, the determinant is |A| or det(A).

e Since the eatly days, a determinant was used to “determine” if a
system of linear equations has a unique solution.

e Cramer (1750) expanded the concept to sets of equations, but a
bit later, they were recognized as independent functions,
Vandermole (1772).

* Determinants are used to characterize invertible matrices. A
matrix is invertible (non-singular) if and only if | A|#0.

o Thatis, if |A|#0 — A is invertible or non-singular.

 Can be found using factorials, pivots, and cofactors!

* Lots of interpretations.
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4.7 Determinant of a Matrix

e When 7 is small, determinants are used for inversion and to solve

systems of equations.

Example: Inverse of a 2x2 matrix:

A:F b} | A= det(A) = ad —bc
c d

Al = # d b This matrix is called the
ad —bc|—-c a

Al =adjA4)/ | A|

adjugate of A (or adj(A)).

4.7 Determinant of a Matrix (3x3)

abc
d e f|=aei+bfg+cdh—afh—bdi—ceg
g h i

a b clab cabc

I g hi right to left

Note: N! terms

* Q: How many flops? For A (3x3), we count 17 operations.

Sarrus’ Rule: Sum
fld e f from left to right.
Then, subtract from
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4.7 Determinants: Laplace formula

* The determinant of a matrix of arbitrary size can be defined
by the Leibniz formmula or the Laplace formula.

o The Laplace formula (or expansion) expresses the determinant
| A| as a sum of 7 determinants of (#-1) X (#-1) sub-matrices
of A. There are n? such expressions, one for each row and
column of A

¢ Define the 7/ minor M;; (usually written as | M;|) of A as the
determinant of the (#-1) X (#-1) matrix that results from
deleting the /~th row and the /~th column of A.

Pierre-Simon Laplace (1749-1827, France).

4.7 Determinants: Laplace formula

¢ Define the C;;the cofactor of A as:

Ci,j = (_:I-)IJrJ | Mi,j |

* The cofactor matrix of A -denoted by C-, is defined as the #x#
matrix whose (7)) entry is the (77) cofactor of A. The transpose
of C is called the adjugate or adjoint of A -adj(A).

¢ Theorem (Determinant as a Laplace expansion)

Suppose A = [a,] is an zxn matrix and 4/= {1, 2, ...,z}. Then the
determinant

| Al=a,Cy, +8;,Ci, +...+8;,C,,
=q;C; +a,,Cy; +...+3,C,
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4.7 Determinants: Laplace formula

e Example: 1 2 3
A= -1 0
4 6

| A|l=1xC,; + 2xC, + 3xC, =
=1Ix(-1x6)+ 2x(-1)x(0)+3x(-(-1)x2)) =0
=-2X(0)+ (-1)(1x6 -3x2 )+ —4x(0)=0

* |A|=0 => The matrix is singular. (Check!)

* How many flops? For a A (3x3), we count 14 operations
(better!). For A (nxn), we calculate # subdeterminants, each of
which requires (#-1) subdeterminants, etc. Then, computations
of order 7! (plus some # terms), or O(#!).

4.7 Determinants: Properties

¢ Interchange of rows and columns does not affect |A].
(Corollary, |A] = |A’|.)

e To any row (column) of A we can add any multiple of any other
row (column) without changing |A].

(Corollary, if we transform Ainto Uor L, |A|=|U| = |L|,
which is equal to the product of the diagonal element of U or
L)

e |I| =1, where I is the identity matrix.

° |£RA| = £ |A|, where £is a scalar.

© |A =AY
° |[AB| = [A|[B].
< |AT|=1/]A].

* Recursive flops formula: flops,= » * (flops, , +2) - 1
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4.7 Determinants: R

e Simple command, det(A)
« > M = cbind( rbind(1,2), tbind(6,5) )
L1 12]
[1] 1 6
2] 2 5
>det(M)
[1]-7
> det(M*2)
[1] -28
> Minv <-solve(M); M);Minv
LI 12
[1,] -0.7142857 0.8571429
[2,] 0.2857143 -0.1428571
> det(Minv)
[1] -0.1428571

4.7 Determinants: Computations

* By today’s standards, a 30X30 matrix is small. Yet it would be
impossible to calculate a 30X30 determinant by Laplace formula.
It would require over 7! (30! = 2.65 X 10°?) multiplications.

o If a computer performs one quatrillion (1.0x10'%) multiplications
per second (a Petaflops, the 2008 record), it would have to run for

over 8.4 billion years to compute a 30X30 determinant by Laplace’s
method.

* Using today’s fastest computer (2013 China Tianhe-2, 33
petaflops), it would take 254 million years.

* Not a very useful, computationally speaking, method. Avoid
factorials!
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4.7 Determinants: Computations

 Faster way of evaluating the determinant: Bring the matrix to
UT (or LT) form by linear transformations. Then, the determinant
is equal to the product of the diagonal elements.

* For A (nxn), each linear transformation involves adding a multiple
of one row to another row, that is, 7 or fewer additions and # or
fewer multiplications. Since there are 7 rows, this is a procedure of
order #° -or O(#).

Example: For 7 = 30, we go from 30! = 2.65*10% flops to 303 =
27,000 flops.

4.7 Determinants: Cramer’s Rule - Derivation

* Recall the solution to Ax=d, where A is an zxn matrix:
x* = A'ld

Using the cofactor method to get the inverse we get:

» 1 ..
x =— (adjoint A) (d)
A
- -
. d.|C;
X ICu| [CaulA [Cu| ] ; Gl
* d
S a el alt ol e,
o Bl Ml
* | [Can ml || g :
:xnl nxn nxr?l Zl di |Cin |
L i= i
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4.7 Determinants: Cramer’s Rule - Derivation

* Example: Let A be 3x3. Then,

- s -
. 2. dilCul
i1

1 dl‘Cn“"dz‘Cm“"ds‘Cm‘ 3
« 1
dl‘clz""dz‘czz""ds‘csz‘ = Zdi‘ciz‘
=

1) X, =1
3
2.4ilCy
L= i

x

| M ajeyvaje+ae,| |

3 o
2) Zdi‘cil‘=dl‘C11‘+d2‘C21‘+di‘C3l‘ C; E(_:I-)I+J M;;
i1
Qs g (P2 B 4 [Pz B
3) dlc,|= 8y Ay _
Z ‘ 1‘ 8z ass 2 8y Ay Sa22 85 ‘Al‘
da,
4) d, a, a23 Find|A,|such that x; =|A|/|A
ds 8y Ay

4.7 Determinants: Cramer’s Rule - Derivation

d2 a22 a23
d;IC
Z Cal o, an an| A
a

Sy T an| A
C 11 12 13
iZ:1 Il| I1| a8y, Ay
a3 dp dg
a'll dl al3
a'21 d2 a23
d.|C
X Z | |2| ay d; ay _|A2|
2= & a a a,| |A|
C 11 12 13
iZ:1 |2| I2| A, Ay, Ay
a a a
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4.7 Determinants: Cramer’s Rule - Derivation

all a‘lZ dl‘
el al aZZ d2
d.|C.
2 alCal ey e, d) |al
3 a a a |A|
a.lc. 11 12 13
; I3| I3| a‘21 a'22 a‘23‘
a31 a’32 a33

Gabriel Cramer (1704-1752, Switzerland).

4.7 Determinants: Cramer’s Rule - Derivation

xX X X
Zw N ke %

> *

* Following the pattern, we have the general Cramer’s rule:

di|Cy

di[Cis |

=1 |Asl/|A]
M

[Ad/[A]]
|42 |/]A

[Aal/]Al]
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4.7 Cramer’s Rule Application: Macro

Model

Matrix form
1 -1 -1y I,
-b 1 0| C|=|a-DbT,
-g 0 1]6G 0

The determinant

1 -1 -
A=|-b 1 0|=1-(b+g)
-g 0 1

4.7 Cramer’s Rule Application: Macro Model

* Applying Cramer’s rule for the 3x3 case:

, -1 -
|A|=la-bT, 1 0|=l,+a-bT, Y*:Mz
0 0 1 |

1 , -1

|A|=|-b a-bT, 0|=bl,+{1-g)a-bT,) C'=
-0 0 1
1 -1 1,

|A|=]-b 1 a-bT|=g(a-bT,+1,) G =
-g O 0
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Ch. 4 - Notation and Definitions: Summary

A (Upper case letters) = matrix

b (Lower case letters) = vector

nxm = n rows, 7 columns

rank(A) = number of linearly independent vectors of A
trace(A) = #(A) = sum of diagonal elements of A

Null matrix = all elements equal to zero.

Diagonal matrix = all off-diagonal elements are zero.

I = identity matrix (diagonal elements: 1, off-diagonal: 0)
|A| = det(A) = determinant of A

Al = inverse of A

A’=AT = Transpose of A

| M| = Minor of A

o A=AT => Symmettic matrix
o ATA=AAT => Normal matrix

o AT =A"1 => Orthogonal matrix
o A=A => Idempotent matrix

No math jokes

The only thing I love
more than a fine wine
is a fine equation!
a*+b*=c"
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