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Mathematics for Economists

Chapters 4-5
Linear Models and Matrix Algebra

Johann Carl Friedrich Gauss (1777–1855)
The Nine Chapters on the Mathematical Art
(1000-200 BC)

Objectives of  Math for Economists

 To study economic problems with the formal tools of  math.

 To understand mathematical economics problems by stating the 
unknown, the data and the restrictions/conditions.

 To plan solutions to these problems by finding a connection 
between the data and the unknown

 To carry out your plans for solving mathematical economics 
problems

 To examine the solutions to mathematical economics problems 
for general insights into current and future problems.

 Remember: Math econ is like love – a simple idea but it can get 
complicated.
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4. Linear Algebra

 Some early history:

 The beginnings of  matrices and determinants goes back to the 
second century BC although traces can be seen back to the fourth 
century BC. But, the ideas did not make it to mainstream math 
until the late 16th century

 The Babylonians around 300 BC studied problems which lead to 
simultaneous linear equations.

 The Chinese, between 200 BC and 100 BC, came much closer to 
matrices than the Babylonians. Indeed, the text Nine Chapters on the 
Mathematical Art written during the Han Dynasty gives the first 
known example of  matrix methods.

 In Europe, 2x2 determinants were considered by Cardano at the 
end of  the 16th century and larger ones by Leibniz and, in Japan, by 
Seki about 100 years later. 

4. What is a Matrix?

 A matrix is a set of  elements, organized into rows and columns









dc

ba

rows

columns

• a and d are the diagonal elements. 
• b and c are the off-diagonal elements.

• Matrices are like plain numbers in many ways: 
they can be added, subtracted, and, in some 
cases, multiplied and inverted (divided).   

Arthur Cayley (1821 – 1895, England)
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4. Matrix: Details

 Examples:

5

 321
2212

2111 ; bbbb
aa

aa
A 










• Dimensions of  a matrix: numbers of  rows by  numbers of  
columns. The Matrix A is a 2x2 matrix, b is a 1x3 matrix.

• A matrix with only 1 column or only 1 row is called a vector.

• If  a matrix has an equal numbers of  rows and columns, it is 
called a square matrix. Matrix A, above, is a square matrix.

• Usual Notation: Upper case letters  matrices
Lower case  vectors

 In econometrics, we have data, say T (or N) observations, on a 
dependent variable, Y, and on k explanatory variables, X.

 Under the usual notation, vectors will be column vectors: y and
xk are Tx1 vectors: 

ܡ ൌ
࢟૚
⋮
ࢀ࢟

	 & xj	ൌ
࢞࢐૚
⋮
ࢀ࢐࢞

	 j = 1,..., k

X is a Txk matrix: X ൌ
࢞૚૚ ⋯ ࢞࢑૚
⋮ ⋱ ⋮
૚ࢀ࢞ ⋯ ࢞࢑૚

Its columns are the k Tx1 vectors xj. It is common to treat x1 as 
vector of  ones, ί.

4. Matrix: Details

6
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4.1 Special Matrices: Identity and Null

































000

000

000

  

100

010

001 Identity Matrix: A square matrix with 1’s along 
the diagonal and 0’s everywhere else. Similar to 
scalar “1.”

 Null matrix: A matrix in which all elements are 
0’s. Similar to scalar “0.”

 Both are diagonal matrices  off-diagonal 
elements are zero.
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 Both are examples of  symmetric and idempotent matrices. As we will 
see later:

- Symmetric: A = AT

- Idempotent: A = A2 = A3 = …

4.1 Matrix: Elementary Row Operations

8

• Elementary row operations: 
- Switching: Swap the positions of  two rows 
- Multiplication: Multiply a row by a non-zero scalar 
- Addition: Add to one row a scalar multiple of  another.

• An elementary matrix is a matrix which differs from the identity 
matrix by one single elementary row operation. 

• If  the matrix subject to elementary row operations is associated 
to a system of  linear equations, then these operations do not 
change the solution set. Row operations can make the problem 
easier.

• Elementary row operations are used in Gaussian elimination to 
reduce a matrix to row echelon form. 
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4.1 Matrix multiplication: Details

 Multiplication of  matrices requires a conformability condition
 The conformability condition for multiplication is that the 

column dimensions of  the lead matrix A must be equal to the 
row dimension of  the lag matrix B. 

 If  A is an (mxn) and B an (nxp) matrix (A has the same number 
of  columns as B has rows), then we define the product of  AB. 
AB is (mxp) matrix with its ij-th element is 

 What are the dimensions of  the vector, matrix, and result?

   131211
232221

131211

1211 cccc
bb

bbb
aaaB 














 231213112212121121121111 babababababa 

• Dimensions: a(1x2), B(2x3)  c(1x3)

jk

n

j ijba 1
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4.1 Transpose Matrix


























 


49

08   

13   

4   01

983
AA:Example

 The transpose of  a matrix A is another matrix AT (also written 
A′) created by any one of  the following equivalent actions:

- write the rows (columns) of  A as the columns (rows) of  AT

- reflect A by its main diagonal to obtain AT

 Formally, the (i,j) element of  AT is the (j,i) element of  A: 

[AT]ij = [A]ji
 If  A is a m × n matrix  AT is a n × m matrix. 

 (A')' = A

 Conformability changes unless the matrix is square.

10
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 In econometrics, an important matrix is X’X. Recall X:

X ൌ
࢞૚૚ ⋯ ࢞࢑૚
⋮ ⋱ ⋮
૚ࢀ࢞ ⋯ ࢞࢑૚

a (Txk) matrix

Then,

X’ ൌ
࢞૚૚ ⋯ ૚ࢀ࢞
⋮ ⋱ ⋮
૚ࢀ࢞ ⋯ ࢞࢑૚

a (kxT) matrix

4.1 Transpose Matrix: Example – X’

11

4.1 Basic Operations

 Addition, Subtraction, Multiplication




























hdgc

fbea

hg

fe

dc

ba




























hdgc

fbea

hg

fe

dc

ba




























dhcfdgce

bhafbgae

hg

fe

dc

ba

Just add elements

Just subtract elements

Multiply each row by 
each column and add


















kdkc

kbka

dc

ba
k Multiply each 

element by the scalar
12
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4.1 Basic Matrix Operations: Examples

222222

117

25

20

13

97

12

xxx CBA 



























 Matrix addition

 Matrix subtraction

 Matrix multiplication

 Scalar multiplication

13



























65

11

32

01

97

12

222222 x

2726

34

32

01
x

97

12

xxx CBA 












































8143

2141

16

42

8

1

13

4.1 Basic Matrix Operations: X′X

 A special matrix in econometrics, X′X (a kxk matrix): 

 Recall X (Txk): X= 
࢞૚૚ ⋯ ࢞࢑૚
⋮ ⋱ ⋮
࢞૚ࢀ ⋯ ࢀ࢑࢞

& X’ ൌ
࢞૚૚ ⋯ ࢞૚ࢀ
⋮ ⋱ ⋮
࢞࢑૚ ⋯ ࢀ࢑࢞

2 2
1 1 1 1 2 1 1 1 1 2 1

2 2
1 2 1 1 2 1 2 2 1 2 2

1

2
1 1 1 2 1 1 2

... ...

... ...
=

... ... ... ... ... ... ... ...

...

  

  


  

   
     
 
 
    

n n n
i i i i i i i iK i i i i iK

n n n
ni i i i i i i iK i i i i iK
i

n n n
i iK i i iK i i iK iK i iK i

x x x x x x x x x x

x x x x x x x x x x

x x x x x x x x x

X'X =

 

2

1

2
1 1 2

1

...

        = ...
...

        =





 
 
 
 
 
  

 
 
 
 
 
 


iK

i

in
i i i iK

ik

n
i i i

x

x

x
x x x

x

x x
14
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4.1 Basic Matrix Operations: ί′X

 Recall ί is a column vector of  ones (in this case, a Tx1 vector):

ί =

1
1
…
1

 Given X (Txk), then ί’ X is a 1xk vector:

ί’X ൌ 1 … 1
࢞૚૚ ⋯ ࢞࢑૚
⋮ ⋱ ⋮
࢞૚ࢀ ⋯ ࢀ࢑࢞

= ∑ ࢞૚࢚
ࢀ
࢚ୀ૚ … ∑ ࢞࢑࢚

ࢀ
࢚ୀ૚

Note: If  x1 is a vector of  ones (representing a constant in the 
linear classical model), then:

ί’ x1 = ∑ ࢞૚࢚
ࢀ
࢚ୀ૚ = ∑ ࢀ1

࢚ୀ૚ = T (“dot product”)
15

4.1 Basic Matrix Operations: R

 Many ways to create a vector (c, 2:7, seq, rep, etc) or a matrix (c, 
cbind, rbind). Usually, matrices will be data –i.e., read as inpu:

> v <- c(1, 3, 5)

> v

[1] 1 3 5 

> A <- matrix(c(1, 2, 3, 7, 8, 9), ncol = 3)

> A

[,1] [,2] [,3]

[1,]    1    3    8

[2,]    2    7    9

> B <- matrix(c(1, 3, 1, 1, 2, 0), nrow = 3)

> B

[,1] [,2]

[1,]    1    1

[2,]    3    2

[3,]    1    0 16
16
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4.1 Basic Matrix Operations: R

 Matrix addition/substraction: +/- --element by element

 Matrix multiplication: %*%
> C <- A%*%B #A is 2x3; B is 3x2

> C

[,1] [,2]

[1,]   18    7

[2,]   32   16

 Scalar multiplication: * --elementwise multiplication of  two 
matrices/vectors

> 2*C

[,1] [,2]

[1,]   36   14

[2,]   64   32 17
17

4.1 Basic Matrix Operations: R

 Matrix transpose: t
> t(B) #B is 3x2; t(B) is 2x3

[,1] [,2] [,3]

[1,]    1    3    1

[2,]    1    2    0

 X'X 
> t(B)%*%B # command crossprod(B) is more efficient

[,1] [,2]

[1,]   11    7

[2,]    7    5

 dot product
> i <- c(1,1,1); t(i)%*%v # v <- c(1, 3, 5)

[,1]

[1,]    9
18

18
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4.1 Laws of  Matrix Addition & Multiplication































22222121

12121111

2221

1211

2221

1211

abaa

abba

bb

bb

aa

aa
BA

 Commutative law of  Matrix Addition: A + B = B + A































22222121

12121111

2221

1211

2221

1211

abab

abab

bb

aa

bb

bb
AB

 Matrix Multiplication is distributive across Additions: 

A (B+ C) = AB + AC (assuming comformability applies).

19

4.1 Matrix Multiplication

 Matrix multiplication is generally not commutative.  That is, 

AB  BA even if  BA is conformable
(because different dot product of  rows or col. of  A&B)








 











76

10
,

43

21
BA

       
        





















2524

1312

74136403

72116201
AB

        
        







 













4027

43

47263716

41203110
BA

20
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4.1 Matrix multiplication

 Exceptions to non-commutative  law:

AB=BA iff

B = a scalar,

B = identity matrix I, or

B = the inverse of  A -i.e.,  A-1

 Theorem: It is not true that  AB = AC => B=C

Proof: 
































 





















132

111

212

;

011

010

111

;

321

101

121

CBA

Note: If  AB = AC for all matrices A, then B = C.
21

4.1 Inverse of  a Matrix

 Identity matrix: AI = A


















100

010

001

3I

Notation: Ij is a jxj identity matrix.

 Given A (mxn), the matrix B (nxm) is a right-inverse for A iff  

AB = Im

 Given A (mxn), the matrix C (mxn) is a left-inverse for A iff  

CA = In

22
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4.1 Inverse of  a Matrix

 Theorem: If  A (mxn), has both a right-inverse B and a left-inverse C, 
thenC = B.

Proof:

We have AB=Im and CA=In. 

Thus,

C(AB)= C Im = C and C(AB)=(CA)B= InB = B

⇒ C(nxm)=B(mxn) 

Note: 

- This matrix is unique. (Suppose there is another left-inverse D, 
then D=B by the theorem, so D=C.).

- If  A has both a right and a left inverse, it is a square matrix. It 
is usually called invertible. We say “the matrix A is non-singular.”

4.1 Inverse of  a Matrix

 Inversion is tricky:
(ABC)-1 = C-1B-1A-1

 Theorem: If  A (mxn) and B (nxp) have inverses, then AB is 
invertible and (AB)-1 = B-1A-1

Proof:

We have AA-1=Im and A-1A=In

BB-1=In and B-1B=Ip

Thus,

B-1A-1(AB) = B-1 (A-1A) B= B-1 InB = B-1 B = Ip

(AB) B-1A-1 = A (BB-1) A-1 = A In A-1 = A A-1 = Im

⇒ AB is invertible and (AB)-1 = B-1A-1

 More on this topic later. 24
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4.1 Transpose and Inverse Matrix

 (A + B)' = A' + B'

 If  A' = A, then A is called a symmetric matrix.

 Theorems:

- Given two comformable matrices A and B, then (AB)' = B'A'

- If  A is invertible, then (A-1)' = (A')-1 (and A' is also invertible).

25

4.1 Partitioned Matrix

 A partitioned matrix is a matrix which has been broken into 
sections called blocks or submatrices by horizontal and/or vertical 
lines extending along entire rows or columns. For example, the 
3xm matrix can be partitioned as:

 Augmented matrices are also partitioned matrices. They have 
been partitioned vertically into two blocks.

 Partitioned matrices are used to simplify the computation of  
inverses.
































 ))2x(1()2x1(

))2x(2()2x2(

|

|

|

|

2221

1211

33231

22221

11211

mAA

mAA

aaa

aaa

aaa

m

m

m






26
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4.1 Partitioned Matrix

 If  two matrices, A and B, are partitioned the same way, addition 
can be done by blocks. Similarly, if  both matrices are comformable 
partitioned, then multiplication can be done by blocks.

 A block diagonal matrix is a partitioned square matrix, with main 
diagonal blocks square matrices and the off-diagonal blocks are 
null matrices. 

Nice Property: The inverse of  a block diagonal matrix is just the 
inverse of  each block. 

27













































1

1
2

1
1

2

1

00

00

00

00

00

00

nn A

A

A

A

A

A













4.1 Partitioned Matrix: Partitioned OLS Solution

 In the Classical Linear Model, we have the OLS solution: 

 Use of  the partitioned inverse result produces a fundamental 
result, the Frisch-Waugh (1933) Theorem: To calculate b2 (or b1) 
we do not need to invert the whole matrix. For this result, we need  
the southeast element in the inverse of  (X′X)-1:

 With the partitioned inverse, we get:  
b2 = [ ]-1(2,1) X1′y + [ ]-1(2,2) X2′y
































yX

yX

XXXX

XXXX

b

b
yXXXb

'

'

''

''
')'(

2

1

1

2212

2111

2

11

 
 
 

1 1 1 2

2 1 2 2

-1
X 'X X 'X

X 'X X 'X

[ ]-1(2,2)

28

[ ]-1(2,1)
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4.1 Partitioned Matrix: Partitioned OLS Solution

 From partitioned inverse: b2 = [ ]-1(2,1) X1′y + [ ]-1(2,2) X2′y

 As we will derive later:

1
212

1
21

1
1112

1
21

1
111222

1
1112

21
1

11
1

111221
1

11
1

11

2212

2111

]'[

])')'(('[]')'(''[ where

)'('

')'()'('')'()'(
 Inverse .2

''

''
XX'Matrix    .1








































XMXD

XXXXXIXXXXXXXXXD

DXXXDX

DXXXXXXXDXXXXXXX

XXXX

XXXX

 The algebraic result is: [ ]-1
(2,1) = -D X2’X1(X1’X1)-1

[ ]-1(2,2) =  D = [X2’M1X2]-1

 b2 = [ ]-1(2,1) X1′y + [ ]-1(2,2) X2′y = [X2′M1X2]-1X2′M1y

4.1 Properties of  Symmetric Matrices

 Definition:

If  A' = A, then A is called a symmetric matrix.

 Theorems:

- If  A and B are nxn symmetric matrices, then (AB)' = BA

- If  A and B are nxn symmetric matrices, then (A+B)' = B+A

- If  C is any nxn matrix, then B = C'C is symmetric.

 Useful symmetric matrices:

V = X’X

P = X(X’X)-1X’ P: Projection matrix

M = I – P = I - X(X’X)-1X’ M: Residual maker

30



RS- Chapter 4 16

4.1 Application 1: Linear System

 There is a functional form relating a dependent variable, y, and k
explanatory variables, X. The functional form is linear, but it 
depends on k unknown parameters, . The relation between y and 
X is not exact. There is an error, . We have T observations of  y 
and X. 

 Then, the data is generated according to:

yi = Σj=1,..k xk,i k + i i=1, 2, ...., T.

Or using matrix notation: 

y = X  + 
where y &  are (Tx1); X is (Txk); and  is (kx1). 

 We will  call this relation data generating process (DGP).

 The goal of  econometrics is to estimate the unknown vector . 31

4.1 Application 2: System of  Equations

 Assume an economic model as system of  linear equations with: 
aij parameters, where i = 1,.., m rows, j = 1,.., n columns
xi endogenous variables (n), 
di exogenous variables and constants (m).

a11 
x1 

+ a12 
x2 

+ ... + a1n 
xn  = d1

a21 
x1 

+ a22 
x2 

+ ... + a2n 
xn  = d2 

....           ....             ....          ... 
am1 

x1 
+ am2 

x2 
+ ... + amn 

xn  = dm 

 We can write this system using linear algebra notation: A x = d

૚૚ࢇ ⋯ ࢔૚ࢇ
⋮ ⋱ ⋮

૚࢓ࢇ ⋯ ࢔࢓ࢇ

࢞૚
…
࢔࢞

=
૚ࢊ
…
࢓ࢊ

 Q: What is the nature of  the set of  solutions to this system? 32

d = column vector 

A = (mxn) matrix x = column vector 
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 System of  linear equations: Ax = d
where 

A = (mxn) matrix of  parameters
x = column vector of  endogenous variables (nx1) 
d = column vector of  exogenous variables and constants (mx1) 

 Solve for x*

33

 Questions: 
- For what combinations of  A and d there will zero, one, many or 
an infinite number of  solutions? 
- How do we compute (characterize) those sets of  solutions?

4.1 Application 2: System of  Equations

4.1 Solution of  a General Equation System

 Theorem: Given A (mxn). If  A has a right-inverse, then the 
equation Ax = d has at least one solution for every d (mx1).

Proof:
Pick an arbitrary d. Let H be a right-inverse (so AH=Im).
Define x*=Hd. 
Thus,
Ax* = A Hd = Imd = d => x* is a solution. ■

34
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 Theorem: Given A (mxn). If  A has a left-inverse, then the 
equation Ax=d has at most one solution for every d (mx1). That 
is, if  Ax=d has a solution x* for a particular d, then x* is unique.

Proof:
Suppose x* is a solution and z* is another solution. Thus, Ax*=d
and Az*=d. Let G be a left-inverse for A (so GA=In).

Ax*=d  GA x*= Gd
 Inx* = x* = Gd.

Az*= d  GA z* = Gd
 Inz* = z* = Gd.

Thus, 
x*=z*=Gd. ■

4.1 Solution of  a General Equation System

35

 Assume the 2x2 model
2x + y = 12
4x + 2y = 24

Find x*, y*:
y = 12 – 2x
4x + 2(12 – 2x) = 24
4x +24 – 4x = 24
0 = 0 ? indeterminante!

 Why?
4x + 2y =24
2(2x + y) = 2(12)
 one equation with two 

unknowns
2x + y = 12

Conclusion: Not all simultaneous 
equation models have solutions

(not all matrices have inverses).

 Problem with the previous proof? We’re assuming the left-
inverse exists (and there’s always a solution). 

4.1 Solution of  a General Equation System

36
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 Theorem: Given A (mxn) invertible. Then, the equation Ax = d
has one and only one solution for every d (mx1).

Proof: 
Trivial from previous two theorems.

 Given an invertible matrix, A, use the “solve” command:
> A

[,1] [,2]

[1,]   18    7

[2,]   32   16

> d <- c(2, 1)

> x <- solve(A, d)

> x

[1]  0.390625 -0.718750

4.1 Solution of  a General Equation System

37

 A set of  vectors is linearly dependent if  any one of  them can be 
expressed as a linear combination of  the remaining vectors; 
otherwise, it is linearly independent.

 Formal definition: Linear independence (LI)

The set {u1,...,uk} is called a linearly independent set of  vectors iff

c1 u1+....+ ckuk = θ  c1= c2=...=ck,=0.

 Notes:

- Dependence prevents solving a system of  equations. More 
unknowns than independent equations.

- The number of  linearly independent rows or columns in a matrix 
is the rank of  a matrix (rank(A)).

38

4.1 Linear dependence and Rank: Example
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4.1 Linear dependence and Rank: Example

 Examples:  
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4.2 Application 1: One Commodity Market 
Model (2x2 matrix)

 Economic Model

1) Qd = a – bP    (a,b >0)

2) Qs = -c + dP   (c,d >0)

3) Qd = Qs

 Find P* and Q*

Scalar Algebra form

(Endogenous  Vars ::    Constants)

4) 1Q + bP = a 

5) 1Q – dP = -c

40

db

bcad
Q

db

ca
P











*

*
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dAx

c

a

d

b

P

Q

dAx

c

a

P

Q
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Matrix algebra

4.2 Application 1: One Commodity Market 
Model (2x2 matrix)

41

4.2 Application 2: Finite Markov Chains

 Markov processes are used to measure movements over time.

42
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4.2 Application 2: Finite Markov Chains

4.3 Definite Matrices - Forms

 A form is a polynomial expression in which each component 
term has a uniform degree. A quadratic form has a uniform second 
degree.

Examples:

9x + 3y + 2z -first degree form.

6x2 + 2xy + 2y2 -second degree (quadratic) form.

x2z + 2yz2 + 2y3 -third degree (cubic) form.

 A quadratic form can be written as: x’A x, where A is a 
symmetric matrix.

44
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4.3 Definite Matrices - Forms

 For one variable, a quadratic form is the familiar: y = a x2

If  a>0, then a x2 is always non-negative, and equals 0 only when 
x=0. We call a form like this positive definite.

If  a<0, then a x2 is always non-positive, and equals 0 only when 
x=0. We call a form like this negative definite.

There are two intermediate cases, where the form can be equal to 
0 for some non-zero values of  x: negative/positive semidefinite.

 For a general quadratic form,  y = x’A x, we say the form is 
Positive definite if  y is invariably positive (y >0)
Positive semi-definite if  y is invariably non-negative (y ≥ 0)
Negative semi-definite if  y is invariably non-positive (y ≤ 0)
Negative definite if  y is invariably negative (y < 0)
Indefinite if  y changes signs.

45

46

4.3 Definite Matrices - Definition
 A quadratic form is said to be indefinite if  y changes signs.

 A symmetric (n×n) A is called positive definite (pd), positve semidefinite 
(psd), negative semidefinite (nsd) and negative definite (nd) according to the 
corresponding sign of  the quadratic form, y.

For example, if  y = x’A x, is positive, for any non-zero vector x of  
n real numbers; we say A is positive definite.

Example: Let A = X′X.

Then, z′A z = z′X′X z = v′v >0. ⇒ X′X is pd

 In general, we use eigenvalues to determine the definiteness of  a 
matrix (and quadratic form). 
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4.4 Upper and Lower Triangular Matrices

LT
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000

 UT
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521
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













 A square (nxn) matrix C is: 

-Upper Triangular (UT) iff  Cij=0 for i>j
(if  the diagonal elements are all equal to 1,
we have a upper-unit triangular (UUT) matrix) 

-Lower Triangular (LT) iff  Cij=0 for i<j
(if  the diagonal elements are all equal to 1,
we have a lower-unit triangular (LUT) matrix)

-Diagonal (D) iff  Cij=0 for i≠j

47

• Theorems:
The product of  the two UT (UUT) matrices is UT (UUT).
The product of  the two LT (LUT) matrices is LT (LUT).
The product of  the two D matrices is D.

 An (nxn) matrix A can be factorized, with proper row and/or 
column permutations, into two factors, an LT matrix L and an UT 
matrix U: 

48

4.4 UT & LT Matrices – LU Factorization
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 Without permutations in A, the factorization may fail. We have 
an n2 by n2 system. For example, given a11 = l11 u11, if  a11=0, then at 
least one of  l11 & u11 has to be 0, which implies either L or U is 
singular (impossible if  A is non-singular). 

 A proper permutation matrix, P, is enough for LU factorization. 
It is called LU factorization with Partial Pivoting (or PA = LU). 
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4.4 UT & LT Matrices – Forward Substitution

49

• The LU decomposition requires 2n3/3 (plus lower order terms) 
operations or “flops” –i.e., floating point operations (+,-,x,/). 
When n is large, n3 dominates, we describe this situation with  
“order n3”or O(n3).

• Q: Why are we interested in these matrices?
Suppose Ax=d, where A is LT (with non-zero diagonal terms). 

Then, the solutions are recursive (forward substitution).

Example:
x1 = d1/a11

a21 x1 + a22 x2 = d2

a31 x1 +a32 x2 + a33 x3 = d3

Note: For an nxn matrix A, this process involves n2 flops.
49

• Similarly, suppose Ax=d, where A is UT (with non-zero diagonal 
terms). Then, the solutions are recursive (backward substitution).

Example:
a11 x1 +a12 x2 + a13 x3 = d1

a22 x2 + a23 x3 = d2

x3 = d3/a31

Note: Again, for A(nxn), this process involves n2 flops.

4.4 UT & LT Matrices – Back Substitution

50
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51

• Finding a solution to Ax=d
Given A (nxn). Suppose we can decompose A into A=LU, where L
is LUT and U is UUT (with non-zero diagonal).

Then Ax=d  LUx = d. 

Suppose L is invertible Ux = L-1d = c (or d = Lc)
 solve by forward substitution for c.

Then, Ux = c (Gaussian elimination)  solve by backward 
substitution for x. 

• Theorem:
If  A (nxn) can be decomposed A=LU, where L is LUT and U is 
UUT (with non-zero diagonal), then Ax=d has a unique solution 
for every d.

4.4 UT & LT Matrices – Linear Systems

4.4 UT & LT Matrices – LDU Decomposition

• We can write a “symmetric” decomposition. Since U has non-
zero diagonal terms, we can write U=DU*, where U* is UUT.
Example:
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• Theorems:
- If  we can write A (nxn) as A=LDU, where L is LUT, D is  
diagonal with non zero diagonal elements, and U is UUT, then L,
D, and U are unique.

- If  we can write A (nxn) as A=LDU, and A is symmetric, then we 
can write A=LDL’.

52



RS- Chapter 4 27

4.4 Cholesky Decomposition

• Theorem: Cholesky decomposition
A is a symmetric positive definite matrix (A symmetric, A=LDL’, 
and all diagonal elements of  D are positive), then A = HH’.

Proof:
Since A is symmetric, then A=LDL’.
The product of  a LUT matrix and a D matrix is a LUT matrix.
Let D*=D1/2 and L be a LT matrix.
Then H=LD* is matrix is LT  A=HH’. ■

• H is called the Cholesky factor of  A (‘square root’ of  a pd matrix.)

• The Cholesky decomposition is unique. It is used in the 
numerical solution of  systems of  equations, non-linear 
optimization, Kalman filter algorithms, IRF of  VARs, etc.

53

4.4 Cholesky decomposition: Algorithm

54

• Let’s partition matrices A=HH’ as:

/
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• Algorithm
1. Determine l11 and L21: l11 = √a11 & L21 = (1/l11) A21

(if  A is pd  a11>0)

2. Compute L22 from A22 − L21 L21
T = L22 L22

T

(if  A is pd  A22 − L21 L21
T = A22 − A21A21

T/a11 is pd)

André-Louis Cholesky (1875–1918, France)
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4.4 Cholesky decomposition: Algorithm

55

• Example:

55

4.4 Cholesky decomposition: Algorithm

• Example:

Note: Again, for A(nxn), the Cholesky decomposition involves n3/3 
flops.

56
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4.4 Cholesky decomposition: Application

57

• System of  Equations
If  A is a positive definite matrix, then we can solve Ax = d by 
(1) Compute the Cholesky decomposition A=HH′. 
(2) Solve Hy = d for y, (forward solution)
(3) With y known, solve H′x = y for x. (backward solution) 
Q: How many flops? Step (1): n3/3 flops, Steps (2)+(3): 2n2 flops.

Note: A-1 is not computed (Gauss-Jordan methods needs 4n3 flops)

• Ordinary Least Squares (OLS)
Systems of  the form Ax = d with A symmetric and pd are 
common in economics. For example, the normal equations in OLS 
problems are of  this form (the unknown is b):

(y - Xb)′ X = 0  X′X b = X′ y 
No need to compute (X′X)-1 (=A-1) to solve for b.

4.5 Inverse matrix (Again)

 Review

- AA-1 = I

- A-1A=I

- Necessary for matrix to be square to have unique inverse.

- If  an inverse exists for a square matrix, it is unique

- (A')-1=(A-1)’

- If  A is pd, then A-1 = H’-1H-1

- Solution to A x = d
A-1A x* = A-1 d

I x* =A-1 d  x* = A-1 d (solution depends on A-1)

- Linear independence a problem to get x*

- Determinant test! (coming soon)
58
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4.5 Inverse of  a Matrix: Calculation
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Process:
• Append the identity matrix to A.

• Subtract multiples of  the other 
rows from the first row to reduce 
the diagonal element to 1.

• Transform I as you go.

• When the original A matrix 
becomes I, the original identity 
has become A-1.

• Theorem: Let  A be an invertible (nxn) matrix. Suppose that a 
sequence of  elementary row-operations reduces A to the identity 
matrix. Then, the same sequence of  elementary row-operations 
when applied to the identity matrix yields A-1.

















zyx

wvu

tsr

|

100

010

001

4.5 Determination of  the Inverse
(Gauss-Jordan Elimination)

AX = I

I X = K

I X = X = A-1  K = A-1

1) Augmented 
matrix

all A, X and I are (nxn) 
square matrices

X = A-1

Gauss elimination Gauss-Jordan
elimination

further row 
operations

[A    I ] [ UT   H] [ I    K]

2) Transform (using elementary row 
operations) augmented matrix

Wilhelm Jordan (1842– 1899, Germany)
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Find A-1 using the Gauss-Jordan method.

4.5 Gauss-Jordan Elimination: Example 1
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Process: Expand A|I. Start scaling and adding rows  to get I|A-1.
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4.5 Gauss-Jordan Elimination: Example 1

Gauss-
Jordan 
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Partitioned inverse (using the Gauss-Jordan method).

4.5 Gauss-Jordan Elimination: Example 2
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• Q: How many flops to invert a matrix with the G-J method?
A: Avoid inverses! But, if  you must... The process of  zeroing out 
one element of  the left-hand matrix requires multiplying the line 
to be subtracted by a constant (2n flops), and subtracting it (2n 
flops). This must be done for (approximately) n2 matrix elements. 
Thus, the number of  flops is about equal to 4n3 by the G-J 
method. 

• Using a standard PC (100 Gigaflops, 109, per second), for a 
30x30 matrix, the time required is less than a millisecond, 
comparing favorably with 1021+ years for the method of  
cofactors.

• More sophisticated (optimal) algorithms, taking advantage of  
zeros –i.e., the sparseness of  the matrix-, can improve to n3 flops.

4.5 Gauss-Jordan Elimination: Computations

4.5 Matrix inversion: Note

 It is not possible to divide one matrix by another. That is, we 
can not write A/B.  For two matrices A and B, the quotient  can 
be written as AB-1 or B-1A. 

 In general, in matrix algebra AB-1  B-1A.

Thus, writing  A/B does not clearly identify whether it represents 
AB-1 or B-1A. 

We’ll say B-1 post-multiplies A (for AB-1) and 

B-1 pre-multiplies A (for B-1A) 

 Matrix division is matrix inversion.

66
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4.5 Matrix inversion: R

 To find the inverse of  a matrix or solve a system of  equations, 
use  "solve"

> A

[,1] [,2]

[1,]   18    7

[2,]   32   16

> solve(A)

[,1]      [,2]

[1,]  0.25 -0.109375

[2,] -0.50  0.281250

 Solve system Ax = d
> d <- c(2, 1)

> x <- solve(A, d); x

[1]  0.390625 -0.718750 67

4.6 Trace of  a Matrix

 The trace of  an nxn matrix A is defined to be the sum of  the 
elements on the main diagonal of  A:

trace(A) = tr(A) = Σi aii.

where aii is the entry on the ith row and ith column of  A. 

 Properties:

- tr(A + B) = tr(A) + tr(B)

- tr(cA) = c tr(A)

- tr(AB) = tr(BA)

- tr(ABC) = tr(CAB) (invariant under cyclic permutations.)

- tr(A) = tr(AT)

- d tr(A) = tr(dA) (differential of  trace)

- tr(A) = rank(A) when A is idempotent –i.e., A= A2.

68
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4.6 Application: Rank of  the Residual Maker

 We define M, the residual maker, as:

M = In - X(X′X)-1 X′ = In - P

where X is an nxk matrix, with rank(X)=k

 Let’s  calculate the trace of   M: 

tr(M) = tr(In) - tr(P) = n - k

- tr(IT) = n

- tr(P) = k

Recall tr(ABC) = tr(CAB)

 tr(P) = tr(X(X′X)-1 X′) = tr(X′X (X′X)-1) = tr(Ik) = k

 Since M is an idempotent matrix –i.e., M= M2-, then 

rank(M) = tr(M) = n - k 69

4.7 Determinant of  a Matrix

 The determinant is a number associated with any squared 
matrix. 

 If  A is an nxn matrix, the determinant is |A| or det(A).

 Since the early days, a determinant was used to “determine” if  a 
system of  linear equations has a unique solution.

 Cramer (1750) expanded the concept to sets of  equations, but a 
bit later, they were recognized as independent functions, 
Vandermole (1772).

 Determinants are used to characterize invertible matrices. A 
matrix is invertible (non-singular) if  and only if  |A|≠0.

 That is, if  |A|≠0 → A is invertible or non-singular.

 Can be found using factorials, pivots, and cofactors! 

 Lots of  interpretations. 70
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4.7 Determinant of  a Matrix

 When n is small, determinants are used for inversion and to solve 
systems of  equations. 

Example: Inverse of  a 2x2 matrix:











dc

ba
A bcadAA  )det(||
















ac

bd

bcad
A

11 This matrix is called the 
adjugate of  A (or adj(A)).

A-1 = adj(A)/|A|

cegbdiafhcdhbfgaei

ihg

fed

cba



ihg

fed

cba

ihg

fed

cba

ihg

fed

cba Sarrus’ Rule: Sum 
from left to right. 
Then, subtract from 
right to left
Note: N! terms

 Q: How many flops? For A (3x3), we count 17 operations. 

4.7 Determinant of  a Matrix (3x3)
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4.7 Determinants: Laplace formula

 The determinant of  a matrix of  arbitrary size can be defined 
by the Leibniz formula or the Laplace formula. 

 The Laplace formula (or expansion) expresses the determinant 
|A| as a sum of  n determinants of  (n-1) × (n-1) sub-matrices 
of  A. There are n2 such expressions, one for each row and 
column of  A

 Define the i,j minor Mij (usually written as |Mij|) of  A as the 
determinant of  the (n-1) × (n-1) matrix that results from 
deleting the i-th row and the j-th column of  A. 

73
Pierre-Simon Laplace (1749–1827, France).

 Define the Ci,j the cofactor of  A as:

74

||)1( ,, ji
ji

ji MC 

• The cofactor matrix of  A -denoted by C-, is defined as the nxn
matrix whose (i,j) entry is the (i,j) cofactor of  A. The transpose 
of  C is called the adjugate or adjoint of  A -adj(A). 

• Theorem (Determinant as a Laplace expansion)

Suppose A = [aij] is an nxn matrix and i,j= {1, 2, ...,n}. Then the 
determinant

njnjjjijij

ininiiii

CaCaCa

CaCaCaA




...

...||

22

2211

4.7 Determinants: Laplace formula
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 Example:

75


















642

010

321

A

0)0(x4)3x2-x61)(1()0(x2

0))2x)1((x3)0(x)1(x2)6x1(x1

x3x2x1|| 131211




 CCCA

 |A|=0  The matrix is singular. (Check!) 

 How many flops? For a A (3x3), we count 14 operations 
(better!). For A (nxn), we calculate n subdeterminants, each of  
which requires (n-1) subdeterminants, etc.  Then, computations 
of  order n! (plus some n terms), or O(n!). 

4.7 Determinants: Laplace formula

4.7 Determinants: Properties

 Interchange of  rows and columns does not affect |A|. 
(Corollary, |A| = |A’|.)

 To any row (column) of  A we can add any multiple of  any other 
row (column) without changing |A|. 

(Corollary, if  we transform A into U or L , |A|=|U| = |L|, 
which is equal to the product of  the diagonal element of  U or 
L.)

 |I| = 1, where I is the identity matrix. 

 |kA| = kn |A|, where k is a scalar.

 |A| = |A’|.

 |AB| = |A||B|.

 |A-1|=1/|A|.

 Recursive flops formula: flopsn= n * (flopsn-1 + 2) - 176
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4.7 Determinants: R

 Simple command, det(A)

 > M = cbind( rbind(1,2), rbind(6,5) )
[,1] [,2]

[1,]    1    6

[2,]    2    5

>det(M)

[1] -7

> det(M*2)

[1] -28

> Minv <-solve(M); M);Minv

[,1]       [,2]

[1,] -0.7142857  0.8571429

[2,]  0.2857143 -0.1428571

> det(Minv)

[1] -0.1428571
77

4.7 Determinants: Computations

 By today’s standards, a 30×30 matrix is small. Yet it would be
impossible to calculate a 30×30 determinant by Laplace formula.
It would require over n! (30! ≈ 2.65 × 1032) multiplications.

 If  a computer performs one quatrillion (1.0x1015) multiplications 
per second (a Petaflops, the 2008 record), it would have to run for 
over 8.4 billion years to compute a 30×30 determinant by Laplace’s 
method.

 Using today’s fastest computer (2013 China Tianhe-2, 33 
petaflops), it would take 254 million years.

 Not a very useful, computationally speaking, method. Avoid 
factorials! 78
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4.7 Determinants: Computations

 Faster way of  evaluating the determinant: Bring the matrix to 
UT (or LT) form by linear transformations. Then, the determinant 
is equal to the product of  the diagonal elements. 

 For A (nxn), each linear transformation involves adding a multiple 
of  one row to another row, that is, n or fewer additions and n or 
fewer multiplications. Since there are n rows, this is a procedure of  
order n3 -or O(n3). 

Example: For n = 30, we go from 30! = 2.65*1032 flops to 303 = 
27,000 flops.  

79

   



















































































































n

i
ini

n

i
ii

n

i
ii

nx
n

nxn

nnnn

n

n

x

nx
Cd

Cd

Cd

A

d

d

d

CCC

CCC

CCC

A

x

x

x

dA
A

x

n

1

1
2

1
1

1

2

1

21

22212

12111

11

1

*

*

*

*

11

adjoint 
1

2

1












80

4.7 Determinants: Cramer’s Rule - Derivation

• Recall the solution to Ax=d, where A is an nxn matrix:
x* = A-1d

Using the cofactor method to get the inverse we get:
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• Example: Let A be 3x3. Then, 

4.7 Determinants: Cramer’s Rule - Derivation
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4.7 Determinants: Cramer’s Rule - Derivation
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4.7 Determinants: Cramer’s Rule - Derivation

Gabriel Cramer (1704-1752, Switzerland).
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4.7 Determinants: Cramer’s Rule - Derivation

• Following the pattern, we have the general Cramer’s rule:
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4.7 Cramer’s Rule Application: Macro 

Model
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• Applying Cramer’s rule for the 3x3 case:

4.7 Cramer’s Rule Application: Macro Model
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Ch. 4 - Notation and Definitions: Summary

 A (Upper case letters) = matrix
 b (Lower case letters) = vector
 nxm = n rows, m columns
 rank(A) = number of  linearly independent vectors of  A
 trace(A) = tr(A) = sum of  diagonal elements of  A
 Null matrix = all elements equal to zero.
 Diagonal matrix = all off-diagonal elements are zero.
 I = identity matrix (diagonal elements: 1, off-diagonal: 0)
 |A| = det(A) = determinant of  A
 A-1 = inverse of  A
 A’=AT = Transpose of  A
 |Mij|= Minor of  A
 A=AT => Symmetric matrix
 AT A =A AT => Normal matrix
 AT =A-1 => Orthogonal matrix
 A =A2 => Idempotent matrix 87


