
Unit-1 (Fundamentals of C)

Material collected from various books and websites 1

About C programming language:

C is a procedural programming language. It was initially developed by Dennis Ritchie in the

year 1972. The main features of C language include low-level access to memory, a simple

set of keywords, and clean style, these features make C language suitable for system

programming like an operating system or compiler development.

Basic Structure of a C program:

Documentation Section: This section consists of comment lines which include the name of

programmer, the author and other details like time and date of writing the program.

Documentation section helps anyone to get an overview of the program.

Link Section: The link section consists of the header files of the functions that are used in

the program. It provides instructions to the compiler to link functions from the system library.

For example, stdio.h, conio.h etc.

Definition Section: All the symbolic constants (like macros), are written in definition section.

Global Declaration Section: The global variables that can be used anywhere in the

program are declared in global declaration section.

main() Function Section: It is necessary have one main() function in every C program. It is

the starting point of a C program and also known as heart of the program. This section

contains two parts, declaration and executable part.

The declaration part declares all the variables that are used in executable part. Each

statement in the declaration and executable part must end with a semicolon (;). The

execution of program starts at opening braces and ends at closing braces.

Unit-1 (Fundamentals of C)

Material collected from various books and websites 2

Subprogram Section: The subprogram section contains all the user defined functions that

are used to perform a specific task. These user defined functions are called in the main()

function.

Tokens in C:

A token is a smallest unit in C-programing language. They are the building blocks of the

program. Tokens are divided into six types as shown below.

Keyword: A keyword is a basic building block of any programming language. Their

meanings are per-defined to the compiler and it cannot be change. C-language provides 32

keywords and all are written in lower case only. It cannot be used as a variable name.

Example: main, break, if, int, float, for, exit, etc.

Identifier: An identifier is a named memory area that is used to store value. It is user define

name that are used to refer any kind of variable, array or function. Identifier can be defining

using both lower case and upper case letters but normally lower case letters are used.

Examples: name, salary, year, amount, etc.

Constant: A constant is a variable whose value does not change throughout the program. It

can be further divided into the following categories.

 Numeric Constant: A numeric constant contain digits from 0 to 9.

It has the following two types:

 Integer Constant: An integer constant contains integer value; it does not contain

fractional part. It may be negative or positive. Example: 100, -25, 50

An integer constant may also represent in following three types.

[a] Decimal [b] Octal [c] Hexadecimal

 Real Constant: A real constant contains numerical value with fractional part. It

may be positive or negative. Example: 10.5, -0.050, 25.075

Unit-1 (Fundamentals of C)

Material collected from various books and websites 3

 Character Constant: Here we mainly consider Single Character constant. It contains

alphabets from a to z. Single character constant includes single character or digit

enclosed by signal quote. Example: „a‟, „10‟, „-5‟

String: String is a sequential series of characters enclosed within double quotes (“ ”).

Example: “Welcome to India”, “123”, “ABC”, “a”

Special symbols: Some special symbols are used to specify the operation or to direct the

compiler to perform the task. Special symbols includes &,!,(), [],{},*,^,<>

Operator: Operators are used to direct the compiler to perform some logical or arithmetic

calculation. The following table shows different operators that can be used in C language.

Data Types:

A data type specifies the type of data that a variable can store such as integer, floating,

character, etc.

Primitive data type: Primitive data types are predefined types of data, which are supported

by the programming language. For example, integer, character, and string are all primitive

data types.

Non-Primitive data type: Non-primitive data types are not defined by the programming

language, but are created by the programmer itself. Eg: Array, Structure, Union etc.

Unit-1 (Fundamentals of C)

Material collected from various books and websites 4

Types Data Types

Basic Data Type int, char, float, double

Derived Data Type array, pointer, structure, union

Enumeration Data Type enum

Void Data Type void

char: The most basic data type in C. It stores a single character and requires a single byte

of memory in almost all compilers.

int: As the name suggests, an int variable is used to store an integer.

float: It is used to store decimal numbers (numbers with floating point value) with single

precision.

double: It is used to store decimal numbers (numbers with floating point value) with double

precision.

What are Variables?

In programming, a variable is a container (storage area) to hold data. To indicate the storage

area, each variable should be given a unique name (identifier). Variable names are just the

symbolic representation of a memory location.

For example: int num = 24;

Here, num is a variable of int (integer) type and the variable is assigned an integer value 24.

Rules for naming a variable:

 A variable name can only have letters (both uppercase and lowercase letters), digits and

underscore.

 The first letter of a variable should be either a letter or an underscore.

 There is no rule on how long a variable name (identifier) can be. However, it should be

short for easy to use.

Writing our first C Program: Example 1

#include <stdio.h>

void main()

{

 // printf() displays the string inside quotation

 printf("Hello, World");

}

Output: Hello, World

Unit-1 (Fundamentals of C)

Material collected from various books and websites 5

Explanation:

 The #include is a pre-processor command that tells the compiler to include the contents

of stdio.h (standard input and output header file) file in the program.

 The stdio.h file contains functions such as scanf() and printf() to take input and display

output respectively.

 If you use the printf() function without writing #include<stdio.h>, the program will not

compile.

 The execution of a C program starts from the main() function.

 printf() is a library function to send formatted output to the screen. In this program,

printf() displays Hello, World text on the screen.

Example 2: C program to ADD two integers

#include <stdio.h>

void main()

{

 int number1, number2, sum;

 printf("Enter two integers: ");

 scanf("%d %d", &number1, &number2);

 // calculating sum

 sum = number1 + number2;

 printf("%d + %d = %d", number1, number2, sum);

}

Output: Enter two integers: 12 11

12 + 11 = 23

Explanation:

In this program, the user is asked to enter two integers. These two integers are stored in

variables number1 and number2 respectively.

printf("Enter two integers: ");

scanf("%d %d", &number1, &number2);

Then, these two numbers are added using the + operator, and the result is stored in the sum

variable.

sum = number1 + number2;

Unit-1 (Fundamentals of C)

Material collected from various books and websites 6

Finally, the printf() function is used to display the sum of numbers.

printf("%d + %d = %d", number1, number2, sum);

Conditional Operator in C (? :):

Conditional operators return one value if condition is true and returns another value is

condition is false. This operator is also called as ternary operator.

Syntax : (Condition ? true_value : false_value);

Example : (A > 100 ? 0 : 1);

In above example, if A is greater than 100, 0 is returned else 1 is returned. This is equal to if

else conditional statements.

Example:

include <stdio.h>

void main()

{

 int x=1, y ;

 y = (x ==1 ? 2 : 0) ;

 printf("x value is %d\n", x);

 printf("y value is %d", y);

}

OUTPUT: x value is 1

y value is 2

Unit-1 (Fundamentals of C)

Material collected from various books and websites 7

DECISION CONTROL STATEMENTS:

The conditional statements help to jump from one part of a program to another depending if

a particular condition is satisfied or not. That means we can control the flow of a program in

such a way so that it executes certain statements based on the outcome of a condition (i.e.

true or false).

There are various types of decision making control statements in C language. They are,

 if statement

 if else statement

 nested if statement

 switch case statement

if statement:

It is the most simple decision making statement and is used to decide whether a certain

statement or block of statements will be executed or not, i.e if a certain condition is true then

a block of statement is executed otherwise not.

Syntax: if(condition)

{

 // Statements to execute if condition is true

}

If the condition is true, then the statements inside the block will be executed, otherwise not.

Unit-1 (Fundamentals of C)

Material collected from various books and websites 8

Example:

#include <stdio.h>

void main()

{

 int x, y;

 x = 15;

 y = 13;

 if (x > y)

 {

 printf("x is greater than y");

 }

}

if-else statement:

Here if the expression is true, the first block is executed and if false then the second block is

executed.

Syntax: if (condition)

{

 // executes this block if condition is true

}

else

{

 // executes this block if condition is false

}

Example:

#include <stdio.h>

void main()

{

 int x, y;

 x = 15;

 y = 13;

 if (x > y)

 {

 printf("x is greater than y");

 }

 else

 {

 printf("y is greater than x");

 }

}

Nested if statement:

Nested if statements means one or more if statement inside another if statement. The

following example is shown to explain nested if.

Unit-1 (Fundamentals of C)

Material collected from various books and websites 9

//C program to find largest of three numbers

#include <stdio.h>

void main()

{

 int a, b, c;

 printf("Enter 3 numbers...");

 scanf("%d%d%d",&a, &b, &c);

 if(a > b)

 {

 if(a > c)

 {

 printf("a is the greatest");

 }

 else

 {

 printf("c is the greatest");

 }

 }

 else

 {

 if(b > c)

 {

 printf("b is the greatest");

 }

 else

 {

 printf("c is the greatest");

 }

 }

}

switch-case statement:

switch statement tests the value of a variable and compares it with multiple cases. Once the

case match is found, a block of statements associated with that particular case is executed.

Syntax: switch (n)

{

 case 1: // code to be executed if n = 1;

 break;

 case 2: // code to be executed if n = 2;

 break;

 default: // code to be executed if n doesn't match any cases

}

Unit-1 (Fundamentals of C)

Material collected from various books and websites 10

Example: Program to print Days according to input numbers

#include <stdio.h>

void main()

{

 int num;

 printf(“\n Insert a Number between 1 to 7”);

 scanf(“%d”, &num);

 switch (num)

{

 case 1: printf("MONDAY");

 break;

 case 2: printf("TUESDAY");

 break;

 case 3: printf("WEDNESDAY");

 break;

 case 4: printf("THURSDAY");

 break;

 case 5: printf("FRIDAY");

 break;

 case 6: printf("SATURDAY");

 break;

case 7: printf("SUNDAY");

 break;

 default: printf("WRONG INPUT");

 break;

 }

}

Unit-1 (Fundamentals of C)

Material collected from various books and websites 11

Loop Control Statements:

A Loop executes the sequence of statements many times until the given condition becomes

false. A loop consists of two parts, a body of a loop and a control statement. The purpose of

the loop is to repeat the same code a number of times.

In C, we have 3 types of Loops:

 while Loop

Syntax: while (condition)

{

 //Statements;

}

Example:

 #include<stdio.h>

#include<conio.h>

void main()

{

 int num=1; //initializing the variable

 while(num<=10) //while loop with condition

 {

 printf("%d\n",num);

 num++; //incrementing operation

 }

 getch()

}

 do-while loop

A do-while loop is similar to the while loop except that the condition is always executed after

the body of a loop. It is also called an exit-controlled loop.

Syntax: do

{

 //Statements

} while (condition);

Example:

#include<stdio.h>

#include<conio.h>

void main()

{

 int num=1; //initializing the variable

 do //do-while loop

 {

 printf("%d\t",2*num);

 num++; //incrementing operation

Unit-1 (Fundamentals of C)

Material collected from various books and websites 12

 } while(num<=10);

 getch();

}

 for loop

Syntax: for (initial value ; condition ; incrementation/decrementation)

{

 //Statements;

}

Example: #include<stdio.h>

void main()

{

 int num;

 for(num=1; num<=10; num++) //for loop to print 1-10 numbers

 {

 printf("%d\n", num); //to print the number

 }

 getch();

}

Difference between while and do-while loop:

while loop do-while loop

Syntax:
while (condition)
{
 statements; //body of loop
}

Syntax:
do
{
 statements; // body of loop.
} while(condition);

Condition check appears at the start of the
loop.

condition appears at the end of the loop

Do not executes if the initial condition is
false

Executes at least once even if the condition
is found false

Also called Entry-controlled loop Also called Exit-controlled loop

No semicolon is used Semicolon is used at the end of the loop

Unit-1 (Fundamentals of C)

Material collected from various books and websites 13

JUMP statements in C:

Jump statements are used to interrupt the normal flow of program. We have following jump

statements in C:

 break

 continue

 goto

 return

break statement: The break statement is used inside loop or switch statement. When

compiler finds the break statement inside a loop, compiler will abort the loop and continue to

execute statements followed by loop.

Example:

for(i=0; i<10; i++)

{

 if(i==5)

 break;

}

here the control will leave the loop body when the value of 'i' becomes 5.

continue statement: The continue statement is also used inside loop. When compiler finds

the continue statement inside a loop, it will skip all the following statements in the loop and

start the next iteration.

Example:

for(i=0; i<10; i++)

{

if(n==5)

continue;

printf("\n%d",n);

}

goto statement: The goto statement is a jump statement which jumps from one point to

another point.

Example:

for(i=0; i<10; i++)

{

 if(i==5)

 goto label;

}

label

Unit-1 (Fundamentals of C)

Material collected from various books and websites 14

{

 printf("Now this line will be executed.");

}

return statement: The return statement terminates the execution of a function and returns

control to the calling function. If it is used, it must be the last statement of a function. If no

return statement appears in a function definition, control automatically returns to the calling

function after the last statement of the called function is executed.

Syntax: return value;

