
Functions in C Language

Material collected from various books and websites 1

What is a Function?

A function is a block of statements that performs a specific task. Suppose we are building an application in C

language and in one of our program, we need to perform a same task more than once. In such case we have

two options:

 Use the same set of statements every time we want to perform the task

 Create a function to perform that task, and just call it every time we need to perform that task.

Here option (b) is obviously a good practice.

Importance functions in C:

Functions are used because of following reasons –

 To improve the readability of code.

 Improves the reusability of the code, same function can be used in any program rather than writing

the same code again.

 Debugging of the code would be easier if we use functions, as errors are easy to be traced.

 Reduces the size of the code, duplicate set of statements are replaced by function calls.

Types of functions:

1) Predefined standard library functions – such as puts(), gets(), printf(), scanf() etc – These are the functions

which already have a definition in header files (.h files like stdio.h).

2) User Defined functions – The functions that we create in a program are known as user defined functions.

How to use a function?

To use a function the following three steps we need to follow:

Function declaration/ prototype: A function prototype is simply the declaration of a function that specifies

function's name, parameters and return type. It doesn't contain function body. A function prototype gives

information to the compiler that the function may later be used in the program.

Syntax:

return_type function_name (data_type parameter...)

{

//code to be executed

}

Function call: Function can be called from anywhere in the program. The parameter list must be same in

function calling and function declaration. We must pass the same number of parameters as it is declared in

the function declaration.

Syntax: function_name (argument_list);

Function definition: It contains the actual statements which are to be executed. It is the most important

aspect to which the control comes when the function is called. Here, we must notice that only one value can

be returned from the function. It is also called function body part.

Syntax: return_type function_name (argument list)

{

//function body;

}

Functions in C Language

Material collected from various books and websites 2

Passing arguments to a function:

In programming, argument refers to the variable passed to the function. In the example below, two variables

n1 and n2 are passed during the function call. The parameters, ‘a’ and ‘b’ accepts the arguments in the

function definition. These arguments are called formal parameters of the function.

‘return’ Statement:

The return statement terminates the execution of a function and returns a value to the calling function. The

program control is transferred to the calling function after the return statement. In the example shown

below, the value of the result variable is returned to the main() function. The sum variable in the main()

function is assigned this value.

Functions in C Language

Material collected from various books and websites 3

Actual Parameters and Formal Parameters:

Actual Parameters: The values/variables passed while calling a function are called actual parameters.

Formal Parameters: These are the variables declared in function definition/prototype, and receive their

values when a call to that function is made.

The value(s) of the actual parameters are copied to formal parameters when the call to that function is

made. The following example shows it clearly.

#include<stdio.h>

int sum(int a, int b) //Function definition, here a and b are formal parameters

{

 return a+b;

}

void main()

{

 int x=10,y=20;

 int s = sum(x,y); //Function call, here x and y are actual parameters

}

Parameter passing techniques:

There are two techniques through which we can pass parameters to a function:

 Call by Value

 Call by Reference

Call by value: In call by value, a copy of actual arguments is passed to formal arguments of the called

function and any change made to the formal arguments in the called function have no effect on the values of

actual arguments in the calling function.

Call by reference: In call by reference, the location (address) of actual arguments is passed to formal

arguments of the called function. This means by accessing the addresses of actual arguments we can alter

them within from the called function.

Functions in C Language

Material collected from various books and websites 4

Difference between call by value and call by reference:

call by value call by reference

This method copy original value into function as

an argument.

This method copy address of argument into

function as an argument.

Changes made to the parameter inside the

function have no effect on the argument.

Changes made to the parameter affect the

argument. Because address is used to access the

actual argument.

Actual and formal arguments will be created in

different memory location

Actual and formal arguments will be created in

same memory location

Example of call by value:

#include<stdio.h>

#include<conio.h>

void swap(int a, int b)

{

 int temp;

 temp=a;

 a=b;

 b=temp;

}

void main()

{

 int a=100, b=200;

 clrscr();

 swap(a, b); // passing value to function

 printf("\nValue of a: %d",a);

 printf("\nValue of b: %d",b);

 getch();

}

Example of call by reference:

#include<stdio.h>

#include<conio.h>

void swap(int *a, int *b)

{

 int temp;

 temp=*a;

 *a=*b;

 *b=temp;

}

Functions in C Language

Material collected from various books and websites 5

void main()

{

 int a=100, b=200;

 clrscr();

 swap(&a, &b); // passing value to function

 printf("\nValue of a: %d",a);

 printf("\nValue of b: %d",b);

 getch();

}

