
1

INLINE FUNCTION:

C++ inline function is powerful concept that is commonly used with classes. If a function is inline, the

compiler places a copy of the code of that function at each point where the function is called at

compile time.

Any change to an inline function could require all clients of the function to be recompiled because

compiler would need to replace all the code once again otherwise it will continue with old

functionality.

To inline a function, place the keyword inline before the function name and define the function before

any calls are made to the function. The compiler can ignore the inline qualifier in case defined function

is more than a line.

A function definition in a class definition is an inline function definition, even without the use of

the inline specifier.

Following is an example which makes use of inline function to returns max of two numbers:

#include <iostream>

inline int Max(int x, int y)

{

 return (x > y)? x : y;

}

int main()

{

 cout << "Max (20,10): " << Max(20,10);

 cout << "Max (0,200): " << Max(0,200);

 cout << "Max (100,1010): " << Max(100,1010);

 return 0;

}

When the above code is compiled and executed, it produces following result:

Max (20,10): 20

Max (0,200): 200

Max (100,1010): 1010

2

STORAGE CLASS:

A storage class defines the scope (visibility) and life time of variables and/or functions within a C++

Program. These specifiers precede the type that they modify. There are following storage classes

which can be used in a C++ Program

 auto

 register

 static

 extern

 mutable

The auto Storage Class:

The auto storage class is the default storage class for all local variables.

{

 int mount;

 auto int month;

}

The example above defines two variables with the same storage class, auto can only be used within

functions, i.e. local variables.

The Register Storage Class:

The register storage class is used to define local variables that should be stored in a register instead of

RAM. This means that the variable has a maximum size equal to the register size (usually one word)

and can't have the unary '&' operator applied to it (as it does not have a memory location).

{

 register int miles;

}

The register should only be used for variables that require quick access such as counters. It should also

be noted that defining 'register' goes not mean that the variable will be stored in a register. It means

that it MIGHT be stored in a register depending on hardware and implementation restrictions.

The static Storage Class:

The static storage class instructs the compiler to keep a local variable in existence during the lifetime

of the program instead of creating and destroying it each time it comes into and goes out of scope.

Therefore, making local variables static allows them to maintain their values between function calls.

The static modifier may also be applied to global variables. When this is done, it causes that variable's

scope to be restricted to the file in which it is declared.

In C++, when static is used on a class data member, it causes only one copy of that member to be

shared by all objects of its class.

#include <iostream>

// Function declaration

void func(void);

static int count = 10; /* Global variable */

main()

3

{

 while(count--)

 {

 func();

 }

 return 0;

}

// Function definition

void func(void)

{

 static int i = 5; // local static variable

 i++;

 std::cout << "i is " << i ;

 std::cout << " and count is " << count << std::endl;

}

When the above code is compiled and executed, it produces following result:

i is 6 and count is 9

i is 7 and count is 8

i is 8 and count is 7

i is 9 and count is 6

i is 10 and count is 5

i is 11 and count is 4

i is 12 and count is 3

i is 13 and count is 2

i is 14 and count is 1

i is 15 and count is 0

The extern Storage Class:

The extern storage class is used to give a reference of a global variable that is visible to ALL the

program files. When you use 'extern' the variable cannot be initialized as all it does is point the

variable name at a storage location that has been previously defined.

When you have multiple files and you define a global variable or function which will be used in other

files also, then extern will be used in another file to give reference of defined variable or function. Just

for understanding extern is used to declare a global variable or function in another files.

The extern modifier is most commonly used when there are two or more files sharing the same global

variables or functions as explained below.

First File: main.cpp

#include <iostream>

int count ;

extern void write_extern();

main()

{

 count = 5;

 write_extern();

}

4

Second File: write.cpp

#include <iostream>

extern int count;

void write_extern(void)

{

 std::cout << "Count is " << count << std::endl;

}

Here extern keyword is being used to declare count in another file. Now compile these two files as

follows:

$g++ main.cpp write.cpp -o write

This will produce write executable program, try to execute write and check the result as follows:

$./write

5

The mutable Storage Class

The mutable specifier applies only to class objects, which are discussed later in this tutorial. It allows

a member of an object to override constness. That is, a mutable member can be modified by a const

member function.

FUNCTIONS IN C:

A function is a module or block of program code which deals with a particular task. Making functions

is a way of isolating one block of code from other independent blocks of code.

Functions serve two purposes.

 They allow a programmer to say: `this piece of code does a specific job which stands by itself

and should not be mixed up with anything else'.

 Secondly, they make a block of code reusable since a function can be reused in many different

contexts without repeating parts of the program text.

A function can take a number of parameters, do required processing and then return a value. There

may be a function which does not return any value.

Function Declaration and Definition:

A function declaration does not have any body and they just have their interfaces. A function

declaration is usually declared at the top of a C source file, or in a separate header file.

On the other hand, when a function is defined at any place in the program then it is called function

definition. At the time of definition of a function actual logic is implemented with-in the function.

A function declaration (also known as function Prototype) consists of four parts:

 Function type/ Return type

 Function name

 Parameter list

 Semicolon

Syntax for function declaration: <Return type> <Function name> (Parameter list);

5

 Example, int add_data(int, int);

Actual Parameters and Formal Parameters:

Parameters (also known as arguments) are used in three places:

 In function declaration

 In function call

 In function definition or function body

The parameters used in function prototypes and function body are called formal Parameters.

Again those parameters which are used in function call are called Actual parameters.

Category of functions:

Depending on whether arguments are present or not and whether a value is returned or not, a function

may belong to one of the following categories

1. Functions with no arguments and no return type.

2. Functions with arguments and no return type.

3. Functions with arguments and return type.

4. Functions with no arguments and return type.

5. Functions with multiple return types.

What are variables?

A variable is a data name that may be used to store a data value. Unlike constants that remain

unchanged during the execution of a program, a variable may take different values at different times

during execution.

A variable name can be chosen by the programmer in a meaningful way with referenced to the

program.

Local variables

A local variable is a variable that is declared inside a function. These variables only exist inside the

specific function that creates them. They are unknown to other functions and also to the main program.

A local variable can only be used in the function where it is declared. As such, they are normally

implemented using a stack. A local variable do not exist once the function that created it is completed.

They are recreated each time a function is executed or called.

Global variables (also known as External variables)
A global variable is a variable that is declared outside all functions. These variables can be accessed

(ie known) by any function within the program. They are implemented by associating memory

locations with variable names. They do not get recreated if the function is recalled.

Friend Functions:

A friend function is a function that is not a member of a class but has access to the class's private and

protected members. Friend functions are not considered class members. They are normal external

functions that are given special access permissions.

A friend function is declared with the ‘friend’ keyword inside the class where it wants be a friend.

6

A friend function can be accessed without any object name and dot (.) operator like normal function.

A friend function is declared by the class that is granting access. The friend declaration can be placed

anywhere in the class declaration. It is not affected by the access control keywords.

Post increment & Pre Increment:

Increment and decrement operators are unary operators that add or subtract 1 from their operand,

respectively. In C-like languages, the increment operator is written as ++ and the decrement operator is

written as --. Both pre-increment and post-increment increment the value. The difference is in what

they return. Post-increment returns the original value, while pre-increment returns the incremented

value.

The increment operator increases the value of its operand by 1. Similarly, the decrement operator

decreases the value of its modifiable arithmetic operand by 1.

Examples

The following C code fragment illustrates the difference between the pre and post increment and

decrement operators:

int x;

int y;

// Increment operators

x = 1;

y = ++x; // x is now 2, y is also 2

y = x++; // x is now 3, y is 2

// Decrement operators

x = 3;

y = x--; // x is now 2, y is 3

y = --x; // x is now 1, y is also 1

++x is pre-increment and x++ is post-increment,

i.e in the first case, x is incremented before being used and in the second case, x is incremented after

being used.

http://en.wikipedia.org/wiki/Unary_operator
http://en.wikipedia.org/wiki/Operator_(programming)
http://en.wikipedia.org/wiki/Operand

7

Virtual Function in C++ Programming

A virtual function is a member function that is declared within a base class and redefined by a derived

class. To create virtual function, we have to use the keyword virtual. When a class containing virtual

function is inherited, the derived class redefines the virtual function to perform different task.

When a Base class pointer point to derived class object, using base class pointer if we call some

function which is in both classes, then base class function is invoked. But if we want to invoke derived

class function using base class pointer, it can be achieved by defining the function as virtual in base

class, this is how virtual functions support runtime polymorphism.

1. #include <iostream>

2. using namespace std;

3. class B

4. {

5. public:

6. void display()

7. { cout<<"Content of base class.\n"; }

8. };

9.

10. class D : public B

11. {

12. public:

13. void display()

14. { cout<<"Content of derived class.\n"; }

15. };

16.

17. int main()

18. {

19. B *b;

20. D d;

21. b->display();

22.

23. b = &d; /* Address of object d in pointer variable */

24. b->display();

25. return 0;

26. }

8

Note: An object(either normal or pointer) of derived class is type compatible with pointer to base

class. So, b = &d; is allowed in above program.

Output

Content of base class.

Content of base class.

In above program, even if the object of derived class d is put in pointer to base class, display() of the

base class is executed(member function of the class that matches the type of pointer).

Implementation of Virtual Functions

If you want to execute the member function of derived class then, you can declare display() in the

base class virtual which makes that function existing in appearance only but, you can't call that

function. In order to make a function virtual, you have to add keyword virtual in front of a function.

1. /* Example to demonstrate the working of virtual function in C++ programming. */

2.

3. #include <iostream>

4. using namespace std;

5. class B

6. {

7. public:

8. virtual void display() /* Virtual function */

9. { cout<<"Content of base class.\n"; }

10. };

11.

12. class D1 : public B

13. {

14. public:

15. void display()

16. { cout<<"Content of first derived class.\n"; }

17. };

18.

19. class D2 : public B

20. {

21. public:

22. void display()

23. { cout<<"Content of second derived class.\n"; }

24. };

25.

26. int main()

9

27. {

28. B *b;

29. D1 d1;

30. D2 d2;

31.

32. /* b->display(); // You cannot use this code here because the function of base class is virtual.

*/

33.

34. b = &d1;

35. b->display(); /* calls display() of class derived D1 */

36. b = &d2;

37. b->display(); /* calls display() of class derived D2 */

38. return 0;

39. }

Output

Content of first derived class.

Content of second derived class.

After the function of base class is made virtual, code b->display() will call the display() of the derived

class depending upon the content of pointer.

In this program, display() function of two different classes are called with same code which is one of

the example of polymorphism in C++ programming using virtual functions.

- See more at: http://www.programiz.com/cpp-programming/virtual-functions#sthash.R5EABiM1.dpuf

10

STORAGE CLASS in C language:

A storage class defines the scope (visibility) and life time of variables and/or functions within a C

Program. These specifiers precede the type that they modify. There are following storage classes

which can be used in a C Program

 auto

 register

 static

 extern

The auto Storage Class:

The auto storage class is the default storage class for all local variables.

{

 int roll_no;

 auto int month;

}

The example above defines two variables with the same storage class, auto can only be used within

functions, i.e. local variables.

The Register Storage Class:

The register storage class is used to define local variables that should be stored in a register instead of

RAM. This means that the variable has a maximum size equal to the register size (usually one word)

and can't have the unary '&' operator applied to it (as it does not have a memory location).

{

 register int pages;

}

The register should only be used for variables that require quick access such as counters. It should also

be noted that defining 'register' goes not mean that the variable will be stored in a register. It means

that it MIGHT be stored in a register depending on hardware and implementation restrictions.

The static Storage Class:

The static storage class instructs the compiler to keep a local variable in existence during the lifetime

of the program instead of creating and destroying it each time it comes into and goes out of scope.

Therefore, making local variables static allows them to maintain their values between function calls.

In C, when static is used on a class data member, it causes only one copy of that member to be shared

by all objects of its class.

The extern Storage Class:

The extern storage class is used to give a reference of a global variable that is visible to ALL the

program files. When you use 'extern' the variable cannot be initialized as all it does is point the

variable name at a storage location that has been previously defined.

In general, the extern is used to declare a global variable or function in another files.

11

The extern modifier is most commonly used when there are two or more files sharing the same global

variables or functions.

